Volume 47 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
WANG Liang, ZHANG Hong-guang, GUO Chun-yu, FENG Li-juan, LI Chun-hu, WANG Wen-tai. Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 834-842.
Citation: WANG Liang, ZHANG Hong-guang, GUO Chun-yu, FENG Li-juan, LI Chun-hu, WANG Wen-tai. Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 834-842.

Facile constructing plasmonic Z-scheme Au NPs/g-C3N4/BiOBr for enhanced visible light photocatalytic activity

Funds:

the National Natural Science Foundation of China 51602297

Fundamental Research Funds for the Central Universities 201612007

Postdoctoral Innovation Program of Shandong Province 201603043

the Major Research Project of Shandong Province 2016ZDJS11A04

More Information
  • Corresponding author: WANG Wen-tai, Tel: 0532-66782502, E-mail: wentaiwang@ouc.edu.cn
  • Received Date: 2019-03-21
  • Rev Recd Date: 2019-04-26
  • Available Online: 2021-01-23
  • Publish Date: 2019-07-10
  • A novel ternary Au NPs/g-C3N4/BiOBr Z-scheme heterojunction composite was fabricated through hydrothermal and in-situ reduction method, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible diffuse reflection spectroscopy and photoluminescence emission spectroscopy. The photocatalytic activity was evaluated by the degradation of phenol under visible-light irradiation. It was found that Au NPs/g-C3N4/BiOBr showed enhanced photocatalytic activity, which is 3-fold higher than g-C3N4 and 2.5-fold higher than BiOBr. This could be attributed to the effective separation of photogenerated electron-hole pairs, narrowed band gap (2.10 eV) and surface plasmon resonance (SPR).
  • loading
  • [1]
    ZHU Z, MURUGANANTHAN M, GU J, ZHANG Y. Fabrication of a Z-Scheme g-C3N4/Fe-TiO2 Photocatalytic composite with enhanced photocatalytic activity under visible light irradiation[J]. Catalysts, 2018, 8(112):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=catalysts-08-00112
    [2]
    CHENG N, TIAN J, LIU Q, GE C, QUSTI A H, ASIRI A M, AL-YOUBI A O, SUN X. Au-nanoparticle-loaded graphitic carbon nitride nanosheets:Green photocatalytic synthesis and application toward the degradation of organic pollutants[J]. ACS Appl Mater Inter, 2013, 5(15):6815-6819. doi: 10.1021/am401802r
    [3]
    ZHAO Y, WANG W, LI Y, ZHANG Y, YAN Z, HUO Z. Hierarchical branched Cu2O nanowires with enhanced photocatalytic activity and stability for H2 production[J]. Nanoscale, 2014, 6(1):195-198. doi: 10.1039/C3NR04280D
    [4]
    CHONG B, CHEN L, WANG W, HAN D, WANG L, FENG L, LI Q, LI C. Visible-light-driven Ag-decorated g-C3N4/Bi2WO6 Z-scheme composite for high photocatalytic activity[J]. Mater Lett, 2017, 204:149-153. doi: 10.1016/j.matlet.2017.06.033
    [5]
    WANG L, SUN B, WANG W, FENG L, LI Q, LI C. Modification of Bi2WO6 composites with rGO for enhanced visible light driven NO removal[J]. Asia Pac J Chem Eng, 2017, 12(1):121-127. doi: 10.1002/apj.v12.1
    [6]
    QU M, WAN S, ZHONG Q, ZHANG S, SONG Y, GUO L, CAI W, XU Y. Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4(040) with enhanced visible-light-induced photocatalytic oxidation performance[J]. Appl Catal B:Environ, 2018, 221:97-107. doi: 10.1016/j.apcatb.2017.09.005
    [7]
    SAFAEI J, ULLAH H, MOHAMED N A, MOHAMED NOH M F, SOH M F, TAHIR A A, AHMAD LUDIN N, IBRAHIM M A, WAN ISAHAK W N R, MAT TERIDI M A. Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst[J]. Appl Catal B:Environ, 2018, 234:296-310. doi: 10.1016/j.apcatb.2018.04.056
    [8]
    YE L, LIU J, JIANG Z, PENG T, ZAN L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Appl Catal B:Environ, 2013, 142-143:1-7. doi: 10.1016/j.apcatb.2013.04.058
    [9]
    YANG Z, LI J, CHENG F, CHEN Z, DONG X. BiOBr/protonated graphitic C3N4 heterojunctions:Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity[J]. J Alloy Compd, 2015, 634:215-222. doi: 10.1016/j.jallcom.2015.02.103
    [10]
    ZHENG Y, JIAO Y, ZHU Y, LI L H, HAN Y, CHEN Y, DU A, JARONIEC M, QIAO S Z. Hydrogen evolution by a metal-free electrocatalyst[J]. Nat Commun, 2014, 5(3783):1-8. http://d.old.wanfangdata.com.cn/Periodical/cldb2018z1008
    [11]
    LI J, SHEN B, HONG Z, LIN B, GAO B, CHEN Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity[J]. Chem Commun, 2012, 48(98):12017-12019. doi: 10.1039/c2cc35862j
    [12]
    JIANG M, SHI Y, HUANG J, WANG L, SHE H, TONG J, SU B, WANG Q. Synthesis of flowerlike g-C3N4/BiOBr with enhanced visible light photocatalytic activity for dye degradation[J]. Eur J Inorg Chem, 2018, 2018(17):1834-1841. doi: 10.1002/ejic.201800110
    [13]
    LI W, FENG C, DAI S, YUE J, HUA F, HOU H. Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light[J]. Appl Catal B:Environ, 2015, 168-169:465-471. doi: 10.1016/j.apcatb.2015.01.012
    [14]
    TONDA S, KUMAR S, KANDULA S, SHANKER V. Fe-doped and mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight[J]. J Mater Chem A, 2014, 2(19):6772-6780. doi: 10.1039/c3ta15358d
    [15]
    WANG H, ZHANG L, CHEN Z, HU J, LI S, WANG Z, LIU J, WANG X. Semiconductor heterojunction photocatalysts:Design, construction, and photocatalytic performances[J]. Chem Soc Rev, 2014, 43(15):5234-5244. doi: 10.1039/C4CS00126E
    [16]
    HUANG Z, SONG J, WANG X, PAN L, LI K, ZHANG X, WANG L. Switching charge transfer of C3N4/W18O49 from type-Ⅱ to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution[J]. Nano Energy, 2017, 10:308-316.
    [17]
    PAN L, ZHANG J, JIA X, MA Y, ZHANG X, WANG L, ZOU J. Highly efficient Z-scheme WO3-x quantum dots/TiO2 for photocatalytic hydrogen generation[J]. Chin J Catal, 2017, 38(2):253-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201702008
    [18]
    JIA X, M. TAHIR, PAN L, HUANG Z, ZHANG X, WANG L, ZOU J. Direct Z-scheme composite of CdS and oxygen-defected CdWO4:An efficient visible-light-driven photocatalyst for hydrogen evolution[J]. Appl Catal B:Environ, 2016, 12:154-161.
    [19]
    FU J, TIAN Y, CHANG B, XI F, DONG X. BiOBr-carbon nitride heterojunctions:Synthesis, enhanced activity and photocatalytic mechanism[J]. J Mater Chem, 2012, 22(39):21159-21166. doi: 10.1039/c2jm34778d
    [20]
    WANG W, WU Z, EFTEKHARI E, HUO Z, LI X, TADE M O, YAN C, YAN Z, LI C, LI Q, ZHAO D, High performance heterojunction photocatalytic membranes formed by embedding Cu2O and TiO2 nanowires in reduced graphene oxide[J]. Catal Sci Technol, 2018, 8(6):1704-1711. doi: 10.1039/C8CY00082D
    [21]
    LIU X, CAI L. Novel indirect Z-scheme photocatalyst of Ag nanoparticles and polymer polypyrrole co-modified BiOBr for photocatalytic decomposition of organic pollutants[J]. Appl Surf Sci, 2018, 445:242-254. doi: 10.1016/j.apsusc.2018.03.178
    [22]
    DI J, XIA J, YIN S, XU H, HE M, LI H, XU L, JIANG Y. A g-C3N4/BiOBr visible-light-driven composite:Synthesis via a reactable ionic liquid and improved photocatalytic activity[J]. RSC Adv, 2013, 3(42):19624-19631. doi: 10.1039/c3ra42269k
    [23]
    GAO H, ZHANG P, ZHAO J, ZHANG Y, HU J, SHAO G, Plasmon enhancement on photocatalytic hydrogen production over the Z-scheme photosynthetic heterojunction system[J]. Appl Catal B:Environ, 2017, 210:297-305. doi: 10.1016/j.apcatb.2017.03.050
    [24]
    YANG Y, GUO W, GUO Y, ZHAO Y, YUAN X, GUO Y. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity[J]. J Hazard Mater, 2014, 271:150-159. doi: 10.1016/j.jhazmat.2014.02.023
    [25]
    HOU J, WANG Z, YANG C, ZHOU W, JIAO S, ZHU H. Hierarchically plasmonic Z-scheme photocatalyst of Ag/AgCl nanocrystals decorated mesoporous single-crystalline metastable Bi20TiO32 nanosheets[J]. J Phys Chem C, 2013, 117(10):5132-5141. doi: 10.1021/jp311996r
    [26]
    YU X, WU P, QI C, SHI J, FENG L, LI C, WANG L. Ternary-component reduced graphene oxide aerogel constructed by g-C3N4/BiOBr heterojunction and graphene oxide with enhanced photocatalytic performance[J]. J Alloy Compd, 2017, 729:162-170. doi: 10.1016/j.jallcom.2017.09.175
    [27]
    GUO Y, ZHANG J, ZHOU D, DONG S. Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation[J]. J Mol Liq, 2018, 262:194-203. doi: 10.1016/j.molliq.2018.04.091
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (233) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return