Volume 46 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
DU Ze-yu, ZHU Ming, BAO Zhe-yu, SHI Da-you, CHEN Xiao-rong, XU Yan, MEI Hua. Catalytic performance of methanol decomposition on Cu/SiO2 catalyst with different silica sources prepared with ammonia evaporation method[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 692-699.
Citation: DU Ze-yu, ZHU Ming, BAO Zhe-yu, SHI Da-you, CHEN Xiao-rong, XU Yan, MEI Hua. Catalytic performance of methanol decomposition on Cu/SiO2 catalyst with different silica sources prepared with ammonia evaporation method[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 692-699.

Catalytic performance of methanol decomposition on Cu/SiO2 catalyst with different silica sources prepared with ammonia evaporation method

More Information
  • Corresponding author: ZHU Ming, Tel: 18205182971, E-mail: mingzhu84@njtech.edu.cn
  • Received Date: 2018-01-26
  • Rev Recd Date: 2018-04-20
  • Available Online: 2021-01-23
  • Publish Date: 2018-06-10
  • Cu/SiO2 catalysts were prepared via ammonia evaporation method, using fumed silica (SiO2-aer), silica gel (SiO2-gel) and alkaline silica sol (SiO2-sol) as the silica sources and their catalytic performance in methanol decomposition were investigated. The catalysts were characterized by N2 adsorption-desorption, N2O chemisorption, inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), H2 temperature programmed reduction (H2-TPR), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy(XPS). The results indicate that silica source can affect the decomposition activity of Cu/SiO2 catalysts. The Cu/SiO2-sol catalyst prepared with alkaline silica sol exhibits larger surface area, smaller active site size and more uniform dispersion of Cu. Therefore, it gives Cu/SiO2-sol a better decomposition performance than other catalysts. Methanol conversion on Cu/SiO2-sol is 10% higher than that on Cu/SiO2-aer, and 7% higher than that on Cu/SiO2-gel. Additionally, byproducts concentration on Cu/SiO2-sol is considerably lower than other catalysts. Under the reaction conditions of 280 ℃, 1 MPa and 0.6 h-1 of WHSV, methanol conversion of 98.4% and gas yield of 96.7% can be achieved.
  • loading
  • [1]
    TONELLI F, GORRIZ O, TARDITI A, CORNAGLIA L, ARRUA L, ABELLO M C. Activity and stability of a CuO/CeO2 catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(39):13379-13387. doi: 10.1016/j.ijhydene.2015.08.046
    [2]
    AMIRI T Y, MOGHADDAS J. Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(3):1472-1480. doi: 10.1016/j.ijhydene.2014.11.104
    [3]
    SIRIRUANG C, CHAROJROCHKUL S, TOOCHINDA P. Hydrogen production from methanol-steam reforming at low temperature over Cu-Zn/ZrO2-doped Al2O3[J]. Monatsh Chem, 2016, 147(7):1143-1151. doi: 10.1007/s00706-016-1662-5
    [4]
    VERENDEL J J, DINER P. Efficient, low temperature production of hydrogen from methanol[J]. ChemCatChem, 2013, 5(10):2795-2797. doi: 10.1002/cctc.v5.10
    [5]
    LYTKINA A A, ZHILYAEVA N A, ERMILOVA M M, OREKHOVA N V, YAROSLAVTSEV A B. Influence of the support structure and composition of Ni-Cu-based catalysts on hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(31):9677-9684. doi: 10.1016/j.ijhydene.2015.05.094
    [6]
    YANG R X, CHUANG K H, WEY M Y. Hydrogen production through methanol steam reforming:Effect of synthesis parameters on Ni-Cu/CaO-SiO2 catalysts activity[J]. Int J Hydrogen Energy, 2014, 39(34):19494-19501. doi: 10.1016/j.ijhydene.2014.09.140
    [7]
    MATSUMURA Y, TANAKA K, TODE N, YAZAWA T, HARUTA M. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica[J]. J Mol Catal A:Chem, 2000, 152(1/2):157-165.
    [8]
    张雄伟, 储伟, 王晓东, 杨维慎, 盛世善, 张涛.氧化铝担载的贵金属铱基催化剂的制备及其对甲醇裂解反应的催化性能[J].催化学报, 2006, 27(10):863-867. doi: 10.3321/j.issn:0253-9837.2006.10.007

    ZHANG Xiong-wei, CHU Wei, WANG Xiao-dong, YANG Wei-shen, SHENG Shi-shan, ZHANG Tao. Preparation of alumina-supported nobel metal iridium catalysts and their catalytic performance for methanol decomposition[J]. Chin J Catal, 2006, 27(10):863-867. doi: 10.3321/j.issn:0253-9837.2006.10.007
    [9]
    YONG S T, OOI C W, CHAI S P, YU F, WU X S. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes[J]. Int J Hydrogen Energy, 2013, 38(22):9541-9552. doi: 10.1016/j.ijhydene.2013.03.023
    [10]
    YAAKOB Z, KAMARUDIN S K, DAUD W R W, YOSFIAH M R, LIM K L, KAZEMIAN H. Hydrogen production by methanol-steam reforming using Ni-Mo-Cu/gamma-alumina trimetallic catalysts[J]. Asia-Pac J Chem Eng, 2010, 5(6):862-868. doi: 10.1002/apj.v5.6
    [11]
    李雪, 王晓文, 赵明, 刘建英, 龚茂初, 陈耀强.钙改性的Pd/CeO2-ZrO2-Al2O3催化剂催化甲醇裂解反应[J].催化学报, 2011, 32(11):1739-1746.

    LI Xue, WANG Xiao-wen, ZHAO Ming, LIU Jian-ying, GONG Mao-chu, CHEN Yao-qiang. Ca-modified Pd/CeO2-ZrO2-Al2O3 catalysts for methanol decomposition[J]. Chin J Catal, 2011, 32(11):1739-1746.
    [12]
    倪哲明, 毛江洪, 潘国祥, 胥倩, 李小年. Pd催化甲醇裂解制氢的反应机理[J].物理化学学报, 2009, 25(5):876-882.

    NI Zhe-ming, MAO Jiang-hong, PAN Guo-xiang, XU Qian, LI Xiao-nian. Mechanism of palladium-catalyzed methanol decomposition for hydrogen production[J]. Acta Phys-Chim Sin, 2009, 25(5):876-882.
    [13]
    WANG G C, ZHOU Y H, MORIKAWA Y, NAKAMURA J, CAI Z S, ZHAO X Z. Kinetic mechanism of methanol decomposition on Ni(111) surface:A theoretical study[J]. Phys Chem B, 2005, 109(25):12431-12442. doi: 10.1021/jp0463969
    [14]
    GREELEY J, MAVRIKAKIS M. Methanol decomposition on Cu(111):A DFT study[J]. J Catal, 2002, 208(2):291-300. doi: 10.1006/jcat.2002.3586
    [15]
    陈红梅, 朱玉雷, 丁国强, 郑洪岩, 李永旺.草酸二甲酯气相催化加氢合成乙二醇的研究[J].燃料化学学报, 2011, 39(7):519-526. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17770.shtml

    CHEN Hong-mei, ZHU Yu-lei, DING Guo-qiang, ZHENG Hong-yan, LI Yong-wang. Study on hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Fuel Chem Technol, 2011, 39(7):519-526. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17770.shtml
    [16]
    HUANG Z W, LIU H L, CUI F, ZUO J L, CHEN J, XIA C G. Effects of the precipitation agents and rare earth additives on the structure and catalytic performance in glycerol hydrogenolysis of Cu/SiO2 catalysts prepared by precipitation-gel method[J]. Catal Today, 2014, 234(4):223-232.
    [17]
    JI D H, LIU G, JIA M J, ZHANG W X, WANG G J, WU T H, WANG Z L. Studies on dehydrogenation of 2-butanol over supported copper catalysts prepared by sol-gel and impregnation methods[J]. Chem J Chin Univ, 2007, 28(8):1543-1546. http://www.cjcu.jlu.edu.cn/EN/Y2007/V28/I8/1543
    [18]
    CHEN L F, GUO P J, QIAO M H, YAN S R, LI H X, SHEN W, XU H L, FAN K N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method:Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal, 2008, 257(1):172-180. doi: 10.1016/j.jcat.2008.04.021
    [19]
    WANG Z Q, XU Z N, PENG S Y, ZHANG M J, LU G, CHEN Q S, CHEN Y M, GUO G C. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catal, 2015, 5(7):4255-4259. doi: 10.1021/acscatal.5b00682
    [20]
    GONG J L, YUE H R, ZHAO Y J, ZHAO S, ZHAO L, LV J, WANG S P, MA X B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc, 2012, 134(34):13922-13925. doi: 10.1021/ja3034153
    [21]
    ZHAO S, YUE H R, ZHAO Y J, WANG B, GENG Y C, LV J, WANG S P, GONG J L, MA X B. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2:Enhanced stability with boron dopant[J]. J Catal, 2013, 297(1):142-150.
    [22]
    ZHANG C C, WANG D H, ZHU M Y, YU F, DAI B. Effect of different nano-sized silica sols as supports on the structure and properties of Cu/SiO2 for hydrogenation of dimethyl oxalate[J]. Catalysts, 2017, 7(3):75.
    [23]
    DONG X H, MA X G, XU H Y, GE Q J. Comparative study of silica-supported copper catalysts prepared by different methods:Formation and transition of copper phyllosilicate[J]. Catal Sci Technol, 2016, 6(12):4151-4158. doi: 10.1039/C5CY01965F
    [24]
    HUANG Z W, CUI F, XUE J J, ZUO J L, CHEN J, XIA C G. Cu/SiO2 catalysts prepared by hom-and heterogeneous deposition-precipitation methods:Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1, 2-propanediol[J]. Catal Today, 2012, 183(1):42-51. doi: 10.1016/j.cattod.2011.08.038
    [25]
    王新雷, 马奎, 郭丽红, 丁彤, 程庆鹏, 田野, 李新刚.蒸氨法制备铜硅催化剂的二甲醚水蒸气重整制氢性能[J].物理化学学报, 2017, 33(8):1699-1708. doi: 10.3866/PKU.WHXB201704263

    WANG Xin-lei, MA Kui, GUO Li-hong, DING Tong, CHENG Qing-peng, TIAN Ye, LI Xin-gang. Catalytic performance for hydrogen production through steam reforming of dimethyl ether over silica supported copper catalysts synthesized by ammonia evaporation method[J]. Acta Phys-Chim Sin, 2017, 33(8):1699-1708. doi: 10.3866/PKU.WHXB201704263
    [26]
    邱坤赞, 郭文文, 王海霞, 朱玲君, 王树荣. Cu/SiO2催化剂结构对乙酸甲酯加氢性能的影响[J].物理化学学报, 2015, 31(6):1129-1136. doi: 10.3866/PKU.WHXB201503272

    QIU Kun-zan, GUO Wen-wen, WANG Hai-xia, ZHU Ling-jun, WANG Shu-rong. Influence of catalyst structure on performance of Cu/SiO2 in hydrogenation of methyl acetate[J]. Acta Phys-Chim Sin, 2015, 31(6):1129-1136. doi: 10.3866/PKU.WHXB201503272
    [27]
    LI F J, WANG L G, HAN X, CAO Y, HE P, LI H Q. Selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over Cu/SiO2 catalysts prepared by ammonia evaporation method[J]. Int J Hydrogen Energy, 2017, 42(4):2144-2156. doi: 10.1016/j.ijhydene.2016.09.064
    [28]
    GHODSELAHI T, VESAGHI M A, SHAFIEKHANI A, BAGHIZADEH A, LAMEⅡ M. XPS study of the Cu@Cu2O core-shell nanoparticles[J]. Appl Surf Sci, 2008, 255(5):2730-2734. doi: 10.1016/j.apsusc.2008.08.110
    [29]
    YU X, ZHAI S B, ZHU W C, GAO S, YAN J B, YUAN H J, CHEN L L, LUO J, ZHANG W X, WANG Z L. The direct transformation of ethanol to ethyl acetate over Cu/SiO2 catalysts that contain copper phyllosilicate[J]. J Chem Sci, 2014, 126(4):1013-1020. doi: 10.1007/s12039-014-0659-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (197) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return