Volume 48 Issue 5
May  2020
Turn off MathJax
Article Contents
DUAN Ting-ming, XIAO Yong, ZHANG Guo-quan, JIA Li-tao, HOU Bo, LI De-bao. Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 626-631.
Citation: DUAN Ting-ming, XIAO Yong, ZHANG Guo-quan, JIA Li-tao, HOU Bo, LI De-bao. Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 626-631.

Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene

  • Received Date: 2020-01-17
  • Rev Recd Date: 2020-03-19
  • Available Online: 2021-01-23
  • Publish Date: 2020-05-10
  • A series of mixed TiO2-ZrO2 oxide catalysts used for the dehydration of octadecanol to octadecene were prepared by doping TiO2 in ZrO2 and calcining at 350-500 ℃. With the increase of calcination temperature, the amount of Lewis acid sites on the catalyst surface gradually increases. The amount of Lewis acid sites on the catalyst calcined at 450 ℃ is the most, and when the calcination temperature is over 450 ℃, the amount of Lewis acid sites decreases. No Brønsted acid sites are found on the catalysts. The mixed TiO2-ZrO2 oxides calcined at temperature below 400 ℃ contain Ti-O-Zr bonds and amorphous structure. The mixed TiO2-ZrO2 oxides with calcination temperature above 400 ℃ show monoclinic and tetragonal phases of ZrO2. The crystalline phase of the metal oxides and amount of the acid sites simultaneously affect the performance of the catalysts. The acid sites on the mixed TiO2-ZrO2 oxides with amorphous structure have much higher dehydration activity than those with monoclinic and tetragonal zirconia crystalline phases. The catalyst calcined at 400 ℃ has the highest yield of 1-octadecene.
  • loading
  • [1]
    ECHAROJ S, SANTIKUNAPORN M, CHAVADEJ S. Transformation of bioderived 1-decanol to diesel-like fuel and biobased oil via dehydration and oligomerization reactions[J]. Energy Fuels, 2017, 31(9):9465-9476. doi: 10.1021/acs.energyfuels.7b01247
    [2]
    李影辉, 曾群英, 万书宝, 迟克彬, 杜海. α-烯烃合成工艺及市场[J].精细石油化工进展, 2004, 5(11):12-16. doi: 10.3969/j.issn.1009-8348.2004.11.004

    LI Ying-hui, ZENG Qun-ying, WAN Shu-bao, CHI Ke-bin, DU Hai. Synthesis process and market of α-olefin[J]. Adv Fine Petrochem, 2004, 5(11):12-16. doi: 10.3969/j.issn.1009-8348.2004.11.004
    [3]
    李影辉, 曾群英, 肖海成, 万书宝, 迟克彬. α-烯烃合成工艺技术进展[J].天然气化工, 2005, 30(2):55-58. doi: 10.3969/j.issn.1001-9219.2005.02.013

    LI Ying-hui, ZENG Qun-ying, XIAO Hai-cheng, WAN Shu-bao, CHI Ke-bin. Progress in alpha olefin synhesis processes[J]. Nat Gas Chem Ind, 2005, 30(2):55-58. doi: 10.3969/j.issn.1001-9219.2005.02.013
    [4]
    赵惠萍. 1-辛烯生产工艺[J].石化技术, 2006, (1):59-64. doi: 10.3969/j.issn.1006-0235.2006.01.017

    ZHAO Hui-ping. Octene-1 manufacturing process[J]. Petrochem Ind Technol, 2006, (1):59-64. doi: 10.3969/j.issn.1006-0235.2006.01.017
    [5]
    郑来昌, 王如文, 杨小辉, 杨克.植物油生产α-烯烃技术进展[J].润滑油, 2015, 30(4):1-4. doi: 10.3969/j.issn.1002-3119.2015.04.001

    ZHENG Lai-chang, WANG Ru-wen, YANG Xiao-hui, YANG Ke. Technical progress of α-olefin production from vegetabe oil[J]. Lubr Oil, 2015, 30(4):1-4. doi: 10.3969/j.issn.1002-3119.2015.04.001
    [6]
    SONG W, LIU Y, BARATH E, WANG L L, ZHAO C, MEI D, LERCHER J A. Dehydration of 1-octadecanol over H-BEA:A combined experimental and computational study[J]. ACS Catal, 2016, 6(2):878-889. doi: 10.1021/acscatal.5b01217
    [7]
    CHOKKARAM S, DAVIS B H. Dehydration of 2-octanol over zirconia catalysts:Influence of crystal structure, sulfate addition and pretreatment[J]. J Mol Catal A:Chem, 1997, 118(1):89-99. doi: 10.1016/S1381-1169(96)00380-9
    [8]
    KOSTESTKYY P, YU J, GORTE R J, MPOURMPAKIS G. Structure-activity relationships on metal-oxides:Alcohol dehydration[J]. Catal Sci Technol, 2014, 4:3861-3869. doi: 10.1039/C4CY00632A
    [9]
    SATO S, TAKAHASHI R, SODESAWA T, YAMAMOTO N. Dehydration of 1, 4-butanediol into 3-buten-1-ol catalyzed by ceria[J]. Catal Commun, 2004, 5(8):397-400. doi: 10.1016/j.catcom.2004.05.006
    [10]
    CHEN B H, LU J Z, WU L P, CHAO Z S. Dehydration of bio-ethanol to ethylene over iron exchanged HZSM-5[J]. Chin J Catal, 2016, 37(11):1941-1948. doi: 10.1016/S1872-2067(16)62524-X
    [11]
    TAKAHASHI N, SUDA A, HACHISUKA I, SUGIURA M, SOBUKAWA H, SHINJOH H. Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides[J]. Appl Catal B:Environ, 2007, 72(1/2):187-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0779edbd3e7600fc0cd22d942cabf2c
    [12]
    MAITY S, RANA M, BEJ S, ANCHEYTA-JUAREZ J, DHAR G M, RAO T P. TiO2-ZrO2 mixed oxide as a support for hydrotreating catalyst[J]. Catal lett, 2001, 72:115-119. doi: 10.1023/A:1009045412926
    [13]
    LI K T, WANG I, WU J C. Surface and catalytic properties of TiO2-ZrO2 mixed oxides[J]. Catal Surv Asia, 2012, 16(4):240-248. doi: 10.1007/s10563-012-9147-y
    [14]
    MANRIQUEZ M, LOPEZ T, GOMEZ R, NAVARRETE J. Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties[J]. J Mol Catal A:Chem, 2004, 220(2):229-237. doi: 10.1016/j.molcata.2004.06.003
    [15]
    AN M, LI L, CAO Y, MA F, LIU D, GU F. Coral reef-like Pt/TiO2-ZrO2 porous composites for enhanced photocatalytic hydrogen production performance[J]. Mol Catal, 2019, 475:110482. doi: 10.1016/j.mcat.2019.110482
    [16]
    FAN M, SI Z, SUN W, ZHANG P. Sulfonated ZrO2-TiO2 nanorods as efficient solid acid catalysts for heterogeneous esterification of palmitic acid[J]. Fuel, 2019, 252:254-261. doi: 10.1016/j.fuel.2019.04.121
    [17]
    梁晓峰, 杨世源, 王军霞.醇热合成ZrO2粉末的X射线衍射及拉曼散射特征[J].人工晶体学报, 2008, 37(4):1037-1041. doi: 10.3969/j.issn.1000-985X.2008.04.054

    LIANG Xiao-feng, YANG Shi-yuan, WANG Jun-xia. X-ray and raman studies of ZrO2 particles synthesized by alcohol-thermal method[J]. J Synth Cryst, 2008, 37(4):1037-1041. doi: 10.3969/j.issn.1000-985X.2008.04.054
    [18]
    POWERS D, GRAY H B, Characterization of the thermal dehydration of zirconium oxide halide octahydrates[J]. Inorg Chem, 1973, 12(11):2721-2726. doi: 10.1021/ic50129a045
    [19]
    KILO M, SCHILD C, WOKAUN A, BAIKER A. Surface oxidic phases of binary and ternary zirconia-supported metal catalysts investigated by raman spectroscopy[J]. J Chem Soc, Faraday Trans, 1992, 88:1453-1457. doi: 10.1039/ft9928801453
    [20]
    MICIUKIEWICZ J, MANG T, KNOZINGER H. Raman spectroscopy characterization of molybdena supported on titania-zirconia mixed oxide[J]. Appl Catal A:Gen, 1995, 122(2):151-159. doi: 10.1016/0926-860X(94)00236-3
    [21]
    孙传智. TiO2基催化剂的制备、表征及其在环境催化中应用的基础研究[M].南京:南京大学, 2011.

    SUN Chuan-zhi. Synthesis and Characterization of Titanium Oxide Based Catalysts and Their Application in the Environmental Catalysis[M]. Nanjing:Nanjing University, 2011.
    [22]
    REDDY B M, CHOWDHURY B, SMIRNIOTIS P G. An XPS study of the dispersion of MoO3 on TiO2-ZrO2, TiO2-SiO2, TiO2-Al2O3, SiO2-ZrO2, and SiO2-TiO2-ZrO2 mixed oxides[J]. Appl Catal A:Gen, 2001, 211(1):19-30. doi: 10.1016/S0926-860X(00)00834-6
    [23]
    MULLINS W, AVERBACH B. Bias-reference X-Ray photoelectron spectroscopy of sapphire and yttrium aluminum garnet crystals[J]. Surf Sci, 1988, 206(1/2):29-40. https://www.sciencedirect.com/science/article/pii/003960288890012X
    [24]
    STEPHENSON D, BINKOWSKI N. X-ray photoelectron spectroscopy of silica in theory and experiment[J]. J Non-Cryst Solids, 1976, 22(2):399-421. doi: 10.1016/0022-3093(76)90069-7
    [25]
    BARTHOS R, LONYI F, ENGELHARDT J, VALYON J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides[J]. Top Catal, 2000, 10:79-87. doi: 10.1023/A:1019112017065
    [26]
    GOTT T, OYAMA S T. A general method for determining the role of spectroscopically observed species in reaction mechanisms:Analysis of coverage transients(ACT)[J]. J Catal, 2009, 263(2):359-371. doi: 10.1016/j.jcat.2009.02.028
    [27]
    HONG E, BAEK S W, SHIN M, SUH Y W, SHIN C H. Effect of aging temperature during refluxing on the textural and surface acidic properties of zirconia catalysts[J]. J Ind Eng Chem, 2017, 54:137-145. doi: 10.1016/j.jiec.2017.05.026
    [28]
    EMEIS C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141:347-354. doi: 10.1006/jcat.1993.1145
    [29]
    TANABE K, SUMIYOSHI T, SHIBATA K, KIYOURA T, KITAGAWA J. A new hypothesis regarding the surface acidity of binary metal oxides[J]. Bull Chem Soc Jpn, 1974, 47:1064-1066. doi: 10.1246/bcsj.47.1064
    [30]
    DAS D, MISHRA H K, PARIDA K M. Preparation, physico-chemical characterization and catalytic activity of sulphated ZrO2-TiO2 mixed oxides[J]. J Mol Catal A:Chem, 2002, 189:271-282. doi: 10.1016/S1381-1169(02)00363-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (197) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return