Volume 45 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
CHEN Guang-hui, LI Yu, ZHANG Chang-sen, ZHANG Rui-qin. Influence of CeO2 on the carbonaceous deposition behavior of Ni-Cu/HZSM-5 catalyst in the hydrodeoxygenation of bio-oil[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 449-457.
Citation: CHEN Guang-hui, LI Yu, ZHANG Chang-sen, ZHANG Rui-qin. Influence of CeO2 on the carbonaceous deposition behavior of Ni-Cu/HZSM-5 catalyst in the hydrodeoxygenation of bio-oil[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 449-457.

Influence of CeO2 on the carbonaceous deposition behavior of Ni-Cu/HZSM-5 catalyst in the hydrodeoxygenation of bio-oil

Funds:

the Henan Science and Technology Cooperation and Open Project 142106000046

More Information
  • Corresponding author: ZHANG Rui-qin, Tel:+86 371 67781284, Fax:+86 371 67781163, E-mail:rqzhang@zzu.edu.cn
  • Received Date: 2016-12-30
  • Rev Recd Date: 2017-02-04
  • Available Online: 2021-01-23
  • Publish Date: 2017-04-10
  • The influence of CeO2 as an additive on the carbonaceous deposition behavior of Ni-Cu/H-ZSM-5 catalyst in the hydrodeoxygenation (HDO) of bio-oil was investigated. Various techniques such as thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used to elucidate the content and microstructure of carbon deposited on the catalyst surface, the transformation of various forms of carbon (soft carbon, hard carbon and graphite) in HDO, and the kinetics of carbon deposition. The results indicate that the content of CeO2 added in the Ni-Cu based catalyst and the reaction temperature both have a significant influence on the carbon deposition behavior and the resistance against coking for HDO of bio-oil; for HDO over the Ni-Cu/HZSM-5 catalyst at 270℃, adding 15% CeO2 gives the Ni-Cu catalyst highest resistance against the carbon deposition.
  • loading
  • [1]
    LI Y, ZHANG C, LIU Y, ZHAI Y, ZHANG R. Coke deposition on Ni/HZSM-5 in bio-oil hydrodeoxygenation processing[J]. Energy Fuels, 2015, 28(1):52-57. https://www.researchgate.net/publication/273906459_Coke_Deposition_on_NiHZSM-5_in_Bio-oil_Hydrodeoxygenation_Processing
    [2]
    RAMZI F, MAX G M, MAIK E, MAIKE H, WIEBKE F, JASMIN A, FRANK G, LAÁSZLOÓ S, NUÚRIA L, DETRE T. Promoted ceria:A structural, catalytic, and computational study[J]. ACS Catal, 2013, 3:2256-68. doi: 10.1021/cs4005002
    [3]
    宋一兵, 余林, 孙长勇, 叶飞, 方奕文, 林维明.稀土Ce对制合成气用Ce-Ni/Al2O3催化剂活性和稳定性的影响[J].催化学报, 2002, 23(3):267-270. http://www.chxb.cn/CN/abstract/abstract19826.shtml

    SONG Yi-bing, YU Lin, SUN Chang-yong, YE Fei, FANG Yi-wen, LIN Wei-ming. Effect of Ce promoteron activity and stability of Ce-Ni/Al2O3 in partial oxidation of methane and CO2 reforming of methane to synga[J]. Chin J Catal, 2002, 23(3):267-270. http://www.chxb.cn/CN/abstract/abstract19826.shtml
    [4]
    SRISIRIWAT N, THERDTHIANWONG S, THERDTHIANWONG A. Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2[J]. Int J Hydrogen Energy, 2009, 34(5):2224-2234 doi: 10.1016/j.ijhydene.2008.12.058
    [5]
    MAGNOUX P, MACHADO F, GUISNET M. Mechanism of coke formation during the transformation of propene, toluene and propene-toluene mixture on HZSM-5[J]. Stud Surf Sci Catal, 1993, 75:435-447. doi: 10.1016/S0167-2991(08)64029-X
    [6]
    XU X, ZHANG C, LIU Y, ZHAI Y, ZHANG R. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels[J]. Chemosphere, 2013, 93(4):652-660. doi: 10.1016/j.chemosphere.2013.06.060
    [7]
    ZHANG X, WANG T, MA L, ZHANG Q, JIANG T. Hydrotreatment of bio-oil over Ni-based catalyst[J]. Bioresour Technol, 2013, 127:306-311. doi: 10.1016/j.biortech.2012.07.119
    [8]
    ZHANG H, SHAO S, XIAO R, SHEN D, ZENG J. Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates[J]. Energy Fuels, 2014, 28(1):52-57. doi: 10.1021/ef401458y
    [9]
    MOLJORD K, MAGNOUX P, GUISNET M. Coking, aging and regeneration of zeolites XV. Influence of the composition of HY zeolites on the mode of formation of coke from propene at 450℃[J]. Appl Catal A:Gen, 1995, 122(1):21-32. doi: 10.1016/0926-860X(94)00210-X
    [10]
    YANG X, XU S, CHEN Z, LIU J. Improved nickel-olivine catalysts with high coking resistance and regeneration ability for the steam reforming of benzene[J]. React Kinet Mech Catal, 2012, 108(2):459-472. https://www.researchgate.net/publication/257643724_Improved_nickel-olivine_catalysts_with_high_coking_resistance_and_regeneration_ability_for_the_steam_reforming_of_benzene
    [11]
    PARK J W, SEO G. IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities[J]. Appl Catal A:Gen, 2009, 356(2):180-188. doi: 10.1016/j.apcata.2009.01.001
    [12]
    GUICHARD B, ROY-AUBERGER M, DEVERS E, REBOURS B, QUOINEAUD A A, DIGNE M. Characterization of aged hydrotreating catalysts. Part Ⅰ:Coke depositions, study on the chemical nature and environment[J]. Appl Catal A:Gen, 2009, 367(1/2):1-8. https://www.researchgate.net/publication/239153817_Characterization_of_aged_hydrotreating_catalysts_Part_I_Coke_depositions_study_on_the_chemical_nature_and_environment
    [13]
    CASTAÑO P, ELORDI G, OLAZAR M, ANDRES T, AGUAYO B P. Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene[J]. Appl Catal B:Environ, 2011, 104(1/2):91-100. http://d.scholar.cnki.net/detail/SJES_U/SJES13011501836191
    [14]
    VOGELAAR B M, VAN LANGEVELD A D, EIJSBOUTS S, MOULIJN J A. Analysis of coke deposition profiles in commercial spent hydroprocessing catalysts using Raman spectroscopy[J]. Fuel, 2007, 86(7/8):1122-1129. https://www.researchgate.net/publication/223831804_Analysis_of_coke_deposition_profiles_in_commercial_spent_hydroprocessing_catalysts_using_Raman_spectroscopy
    [15]
    ROBERTSON J. Diamond-like amorphous carbon[J]. Mater Sci Eng, R, 2002, 37(4):129-281. http://www.oalib.com/references/14026868
    [16]
    WRAGG D S, JOHNSEN R E, BALASUNDARAM M, NORBY P, FUGLERUD T. SAPO-34 methanol-to-olefin catalysts under working conditions:A combined in situ powder X-ray diffraction, mass spectrometry and Raman study[J]. J Catal, 2009, 268(2):290-296.
    [17]
    TUINSTRA F. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3):1126. doi: 10.1063/1.1674108
    [18]
    TAO G. The XPS analysis of surface texture of different-density-level coking coal of fenxi county[J]. Int J Oil, Gas Coal Eng, 2014, 2(4):59-65. doi: 10.11648/j.ogce.20140204.12
    [19]
    MORENO-CASTILLA C, LOPEZ-RAMON M, CARRASCO-MARIN F. Changes in surface chemistry of activated carbons by wet oxidation[J]. Carbon, 2000, 38(14):1995-2001. doi: 10.1016/S0008-6223(00)00048-8
    [20]
    姚素玲, 杨彩虹, 谭猗生, 韩怡卓.甲醇气相羰基化Ni-pd/Ac催化剂失活机理的研究[J].燃料化学学报, 2006, 34(6):706-711. doi: 10.1016/S1872-5813(07)60006-1

    YAO Su-ling, YANG Cai-hong, TAN Yi-sheng, HAN Yi-zhuo. Deactivation of activated carbon supported nickel-palladium catalyst for vapor phase carbonylation of methanol[J]. J Fuel Chem Technol, 2006, 34(6):706-711. doi: 10.1016/S1872-5813(07)60006-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (241) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return