Volume 44 Issue 9
Sep.  2016
Turn off MathJax
Article Contents
SONG Hua, DAI Xue-ya, GONG Jing, SONG Hua-lin, LIU Yan-xiu, LI Feng. Preparation of supported nickel phosphide catalyst by surface modification method and its performance in hydrodeoxygenation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1105-1111.
Citation: SONG Hua, DAI Xue-ya, GONG Jing, SONG Hua-lin, LIU Yan-xiu, LI Feng. Preparation of supported nickel phosphide catalyst by surface modification method and its performance in hydrodeoxygenation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1105-1111.

Preparation of supported nickel phosphide catalyst by surface modification method and its performance in hydrodeoxygenation

Funds:

the National Natural Science Foundation of China 21276048

the Natural Science Foundation of Heilongjiang Province of China ZD201201

the Project of Education Department of Heilongjiang Province 12541060

  • Received Date: 2016-03-24
  • Rev Recd Date: 2016-05-07
  • Available Online: 2021-01-23
  • Publish Date: 2016-09-10
  • With MCM-41 as support, the supported Ni2P/MCM-41 catalyst is prepared by first reducing the Ni2P precursors at low temperature (673 K) and then modifying the surface with air; the as-prepared Ni2P/MCM-41 catalyst was characterized by X-ray diffraction (XRD), N2-sorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and CO uptake. The catalytic performance of Ni2P/MCM-41 in hydrodeoxygenation (HDO) of benzofuran (BF) was investigated to elucidate the effect of surface modification with air on the catalyst structure and HDO activity. The results show that pure Ni2P acts as the active phase on the surface of modified Ni2P/MCM-41 catalyst; the surface modification can decrease the aggregation of P species and promote the formation of small and highly dispersed Ni2P active phase. Under 573 K, 3.0 MPa, a weight hourly space velocity of 4.0 h-1 and a H2/oil volume ratio of 500, the yield of O-free products reaches 88% for HDO of BF over the modified Ni2P/MCM-41 catalyst, which is about 50% higher than that over the catalyst prepared by conventional temperature-programmed reduction method.
  • loading
  • [1]
    SERRANO RUIZ J C, DUMESIC J A. Catalytic routes for the convention of biomass into liquid hudrocarbon transportation fuels[J]. Energy Environ Sci, 2011, 4(1): 83-99. doi: 10.1039/C0EE00436G
    [2]
    HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098. doi: 10.1021/cr068360d
    [3]
    WANG H M, JONATHAN MALE, WANG Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catal, 2013, 3(5): 1047-1070. doi: 10.1021/cs400069z
    [4]
    HUANG Y B, WEI L, ZHAO X H, CHENG S Y, JAMES J, CAO Y H, GU Z G. Upgrading pine sawdust pyrolysis oil to green biofuels by HDO over zinc-assisted Pd/C catalyst[J]. Energy Convers Manage, 2016, 115: 8-16. doi: 10.1016/j.enconman.2016.02.049
    [5]
    MORTAZA G, RICHARD G, HUA X, FERRAN D M M, ROEL W, WEERAWUT C, MD M H, DANIEL M, LI C Z. Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor[J]. Fuel Process Technol, 2016, 148: 175-183. doi: 10.1016/j.fuproc.2016.03.002
    [6]
    PETER M M, HUDSON W P D C, JAN-DIERK G, PETER A J, ANKER D J. Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol[J]. J Catal, 2015, 328: 208-215. doi: 10.1016/j.jcat.2015.02.002
    [7]
    YANG J, ZHAO L, LIU S, WANG Y Y, DAI L Y. High-quality bio-oil from one-pot catalytic hydrocracking of kraft lignin over supported noble metal catalysts in isopropanol system[J]. Bioresour Technol, 2016, 212: 302-310. doi: 10.1016/j.biortech.2016.04.029
    [8]
    GAUDETTE A F, BURNS A W, HAYES J R, MICA C S, RICHARD H B, TAKELE SEDA, MARK E B. M ssbauer spectroscopy investigation and hydrodesulfurization properties of iron-nickel phosphide catalysts[J]. J Catal, 2010, 272(1): 18-27. doi: 10.1016/j.jcat.2010.03.016
    [9]
    OYAMA S T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides[J]. J Catal, 2003, 216(1/2): 343-352. https://www.researchgate.net/publication/223031296_Novel_catalysts_for_advanced_hydroprocessing_Transition_metal_phosphides
    [10]
    LIA X, FENGA J P, GUO J Y, WANG A J, ROEL P, DUAN X P, CHEN Y Y. Preparation of Ni2P/Al2O3 by temperature-programmed reduction of a phosphate precursor with a low P/Ni ratio[J]. J Catal, 2016, 334(1): 116-119.
    [11]
    宋华, 代敏, 宋华林. Ni2P加氢脱硫催化剂[J].化学进展, 2012, 24(5): 43-47.

    SONG Hua, DAI Min, SONG Hua-lin. Ni2P catalyst for hydrodesulfurization[J]. Prog Chem, 2012, 24(5): 43-47.
    [12]
    ABU I I, SMITH K J. HDN and HDS of model compounds and light gas oil derived from Athabasca bitumen using supported metal phosphide catalysts[J]. Appl Catal A: Gen, 2007, 328(1): 58-67. doi: 10.1016/j.apcata.2007.05.018
    [13]
    MOON J S, KIM E G, LEE Y K. Active sites of Ni2P/SiO2catalyst for hydrodeoxygenation of guaiacol: A joint XAFS and DFT study[J]. J Catal, 2014, 311: 144-152. doi: 10.1016/j.jcat.2013.11.023
    [14]
    LEE Y K, SHU Y Y, OYAMA S T. Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4, 6-DMDBT[J]. Appl Catal A: Gen, 2007, 322: 191-204. doi: 10.1016/j.apcata.2007.01.007
    [15]
    宋华, 王紫东, 代敏, 宋华林, 万霞, 李锋. Ni2P催化剂的低温还原法合成及其HDS性能[J].燃料化学学报, 2014, 42(6): 733-737. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18436.shtml

    SONG Hua, WANG Zi-dong, DAI Min, SONG Hua-lin, WAN Xia, LI Feng. Preparation of Ni2P catalysts at low reduction temperature and its HDS performance[J]. J Fuel Chem Technol, 2014, 42(6): 733-737. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18436.shtml
    [16]
    MELéNDEZ-ORTIZ H I, GARCíA-CERDA L A, OLIVARES-MALDONADO Y, CASTRUITA G, MERCADO-SILVA J A, PERERA-MERCADO Y A. Preparation of spherical MCM-41 molecular sieve at room temperature: Influence of the synthesis conditions in the structural properties[J]. Ceram Int, 2012, 38(8): 6353-6358. doi: 10.1016/j.ceramint.2012.05.007
    [17]
    CECILIA J A, INFANTES-MOLINA E, RODRÍGUEZ-CASTELLÓN A, JIMÉNEZ-LÓPEZ A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene[J]. J Catal, 2009, 263(1): 4-15. doi: 10.1016/j.jcat.2009.02.013
    [18]
    BUI P, JUAN A C, OYAMA S T, TAKAGAKI A, INFANTES-MOLINA A, ZHAO H Y, LI D, RODRIGUEZ-CASTELLON E, LÓPEZ A J. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound[J]. J Catal, 2012, 294: 184-198. doi: 10.1016/j.jcat.2012.07.021
    [19]
    LAYMAN K A, BUSSELL M E. Infrared spectroscopic investigation of CO adsorption on silica-supported nickel phosphide catalysts[J]. J Phys Chem B, 2004, 108: 10930-10941. doi: 10.1021/jp037101e
    [20]
    WU S K, LAI P C, LIN Y C. Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts[J]. ACS Sustain Chem Eng, 2013, 1: 349-358. doi: 10.1021/sc300157d
    [21]
    LIU P, RODRIGUEZ J A. Water-gas-shift reaction on a Ni2P (001) catalyst: Formation of oxy-phosphides and highly active reaction sites[J]. J Catal, 2009, 262(2): 294-303. doi: 10.1016/j.jcat.2009.01.006
    [22]
    OKAMOTO H. Hydrodeoxygenation of benzofuran and its oxygenated derivatives (2, 3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst[J]. J Catal, 2009, 353(1): 46-53.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (66) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return