Volume 47 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
LÜ Qiao-ya, LI Long-long, LI Ya-fang, MAO Jin-hua, CHEN Ting, ZHAO Yan-jie, LIU Li-qiang, LI Lu-yan. First-principles study on the photocatalytic properties of Cr-doped Cu2O[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 98-103.
Citation: LÜ Qiao-ya, LI Long-long, LI Ya-fang, MAO Jin-hua, CHEN Ting, ZHAO Yan-jie, LIU Li-qiang, LI Lu-yan. First-principles study on the photocatalytic properties of Cr-doped Cu2O[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 98-103.

First-principles study on the photocatalytic properties of Cr-doped Cu2O

Funds:

the National Natural Science Foundation of China 21603122

Natural Science Foundation of Shandong Province of China ZR2016FB03

Doctoral Foundation of Shandong Jianzhu University XNBS1266

Doctoral Foundation of Shandong Jianzhu University XNBS1535

Doctoral Foundation of Shandong Jianzhu University XNBS1538

  • Received Date: 2018-07-16
  • Rev Recd Date: 2018-11-26
  • Available Online: 2021-01-23
  • Publish Date: 2019-01-10
  • It was found in recent years that inorganic semiconductor materials exhibited excellent photocatalytic performance and had broad application prospects in environmental treatment and energy conversion; in this aspect, Cu2O semiconductor has attracted extensive attention owing its superior adsorption capacity for oxygen and high photo absorption coefficient. Considering that doping in Cu2O could improve its photocatalytic efficiency in the visible region, in this work, the formation energy, electronic structure, and photocatalytic properties of Cu2O doped with different concentrations of Cr were investigated by first-principle calculation. The results indicate that intrinsic Cu2O shows semiconductor properties and the absorption of visible-light is weak; after doping with different concentrations of Cr and in different positions, the Cr-doped Cu2O system are all stable and show metallic characteristics. Compared with intrinsic Cu2O, the absorption peaks of Cr-doped Cu2O in the visible-light range are enhanced. When two Cr atoms are doped in the nearest neighbor configuration, the absorption coefficient in the visible-light region is the largest, with the strongest photocatalytic efficiency. The density of states shows that the visible-light absorption of Cr-doped Cu2O systems is mainly induced by the intra-band transition of electrons in Cr 3d states. The doping concentration and configuration influence mainly the physical properties of Cu2O in the long wavelength range, but have little effect in the short wavelength range. Therefore, an increase in the doping concentration of Cr dopants and a change in the configuration can improve its photocatalytic efficiency in the visible region, and then promote the progress of Cu2O application in photocatalysis.
  • loading
  • [1]
    SU J, LIN Z, CHEN G. Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity[J]. Appl Catal B:Environ, 2016, 186:127-135. doi: 10.1016/j.apcatb.2015.12.050
    [2]
    LI C, CHEN G, SUN J, RAO J, HAN Z, HU Y, XING W, ZHANG C. Doping effect of phosphate in Bi2WO6, and universal improved photocatalytic activity for removing various pollutants in water[J]. Appl Catal B:Environ, 2016, 188:39-47. doi: 10.1016/j.apcatb.2016.01.054
    [3]
    LOU S, JIA X, WANG Y, ZHOU S. Template-assisted in-situ synthesis of porous AgBr/Ag composite microspheres as highly efficient visible-light photocatalyst[J]. Appl Catal B:Environ, 2015, 176:586-593. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d12157bc3f3af00a4e530523da1c7d52
    [4]
    HE Y R, YAN F F, YU H Q, YUAN S J, TONG Z H, SHENG G P. Hydrogen production in a light-driven photoelectrochemical cell[J]. Appl Energy, 2014, 113(1):164-168. http://www.sciencedirect.com/science/article/pii/S0306261913005862
    [5]
    OSTERLOH F E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting[J]. Chem Soc Rev, 2013, 42(6):2294-2320. doi: 10.1039/C2CS35266D
    [6]
    高鑫, 刘祥萱, 王煊军, 朱左明.改性Cu2O光催化剂的研究进展[J].材料工程, 2016, 44(1):120-128. http://d.old.wanfangdata.com.cn/Periodical/clgc201601019

    GAO Xin, LIU Xiang-xuan, WANG Xuan-jun, ZHU Zuo-ming. Progress in research on modified Cu2O photocatalyst[J]. J Mater Eng, 2016, 44(1):120-128. http://d.old.wanfangdata.com.cn/Periodical/clgc201601019
    [7]
    JIANG D, XUE J, WU L, ZHOU W, ZHANG Y, LI X. Photocatalytic performance enhancement of CuO/Cu2O heterostructures for photodegradation of organic dyes:Effects of CuO morphology[J]. Appl Catal B:Environ, 2017, 211:199-204. doi: 10.1016/j.apcatb.2017.04.034
    [8]
    PANG H, GAO F, LU Q. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities[J]. CrystEngCommun, 2010, 12(2):406-412. doi: 10.1039/B904705K
    [9]
    DAS K, SHARMA S N, KUMAR M, DE S K. Luminescence properties of the solvothermally synthesized blue light emitting Mn doped Cu2O nanoparticles[J]. J Appl Phys, 2010, 107(2):433-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bdc3e1535ece6fa6f1f4d2e3564b5f1
    [10]
    LU Y M, CHEN C Y, MING H L. Effect of hydrogen plasma treatment on the electrical properties of sputtered N-doped cuprous oxide films[J]. Thin Solid Films, 2005, 480(1-3):482-485. http://www.sciencedirect.com/science/article/pii/S0921510704006683
    [11]
    唐爱东, 胡莉琴, 王朵. Cu2O的室温液相法合成及光催化性能[J].功能材料, 2011, 42(11):2034-2037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103346672

    TANG Ai-dong, HU Li-qin, WANG Duo. Photo-catalytic property of Cu2O prepared by roomtemperature liquid phase redox method[J]. J Funct Mater, 2011, 42(11):2034-2037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201103346672
    [12]
    LI L, CHENG Y, WANG W, REN S, YANG Y, LUO X, LIU H. Effects of copper and oxygen vacancies on the ferromagnetism of Mn-and Co-doped Cu2O[J]. Solid State Commun, 2011, 151(21):1583-1587. doi: 10.1016/j.ssc.2011.07.025
    [13]
    ZHENG Z, HUANG B, WANG Z, GUO M, QIN X, ZHANG X, WANG P, DAI Y. Crystal faces of Cu2O and their stabilities in photocatalytic reaction[J]. J Phys Chem C, 2009, 113(32):462-470. doi: 10.1021/jp904198d
    [14]
    LEAH ISSEROFF B, CARTER E A. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces[J]. J Phys Chem B, 2013, 117(49):15750-60. doi: 10.1021/jp406454c
    [15]
    GAI Y, LI J, LI S S, XIA J B, WEI S H. Design of narrow-gap TiO2:A passivated codoping approach for enhanced photoelectrochemical activity[J]. Phys Rev Lett, 2009, 102(3):036402. doi: 10.1103/PhysRevLett.102.036402
    [16]
    BALACHANDRAN S, SWAMINATHAN M. Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity[J]. J Phys Chem C, 2013, 116(50):26306-26312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ff2de0c174afe29dec1a87fa0cc5498
    [17]
    WANG Z, HUANG B, DAI Y, QIN X, ZANG X, WANG P, LIU H, YU J. Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method[J]. J Phys Chem C, 2009, 113(11):4612-4617. doi: 10.1021/jp8107683
    [18]
    VAIANO V, MATARANGOLO M, SACCO O, SANNINO D. Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts[J]. Appl Catal B:Environ, 2017, 209:621-630. doi: 10.1016/j.apcatb.2017.03.015
    [19]
    JIANG Z Q, YAO G, AN X Y, FU Y J, GAO L H, WU W D, WANG X M. Electronic and optical properties of Au-doped Cu2O:A first principles investigation[J]. Chin Phys B, 2014, 23(5):470-477. http://www.cqvip.com/QK/85823A/201405/49435130.html
    [20]
    ZHANG L, JING D, GUO L, YAO X. In situ photochemical synthesis of Zn-doped Cu2O hollow microcubes for high efficient photocatalytic H2 production[J]. Acs Sustainable Chem Eng, 2014, 2(6):1446-1452. doi: 10.1021/sc500045e
    [21]
    彭健, 任荣康, 李健宁, 张明举, 牛猛, 马蕾, 闫小兵, 郑树凯. Cl掺杂Cu2O的第一性原理计算[J].微纳电子技术, 2017, (3):157-161. http://www.cqvip.com/QK/83066A/201704/672852863.html

    PENG Jian, REN Rong-kang, LI Jian-ning, ZHANG Ming-ju, NIU Meng, MA Lei, YAN Xiao-bing, ZHENG Shu-kai. First principles calculation of Cl doped Cu2O[J]. Micronanoelectronic Technol, 2017, (3):157-161. http://www.cqvip.com/QK/83066A/201704/672852863.html
    [22]
    SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys Condens Matter, 2002, 14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301
    [23]
    VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B:Condens Matter, 1990, 41(11):7892-7895. doi: 10.1103/PhysRevB.41.7892
    [24]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [25]
    ZHAO R, HASKELL W B, TAN V Y F. Stochastic L-BFGS:Improved convergence rates and practical acceleration strategies[J]. IEEE Trans Signal Process, 2018, 66(5):1155-1169. doi: 10.1109/TSP.2017.2784360
    [26]
    KATAYAMA J, ITO K, MATSUOKA M, TAMAKI J. Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition[J]. J Appl Electrochem, 2004, 34(7):687-692. doi: 10.1023/B:JACH.0000031166.73660.c1
    [27]
    濮春英, 李洪婧, 唐鑫, 张庆瑜. N掺杂Cu2O薄膜的光学性质及第一性原理分析[J].物理学报, 2012, 61(4):380-385. doi: 10.3969/j.issn.1672-7940.2012.04.002

    PU Chun-ying, LI Hong-jing, TANG Xin, ZHANG Qing-yu. Opyical properties of N-doped Cu2O films and relevant analysis with first-principles calculations (in Chinese)[J]. Acta Phys Sin, 2012, 61(4):380-385. doi: 10.3969/j.issn.1672-7940.2012.04.002
    [28]
    陈婷, 庞军, 何红, 彭赟, 吴楠, 徐建, 杜成旭, 庞星星, 毋志民, 崔玉亭. Mn掺杂LiMgP新型稀磁半导体的光电性质[J].科学通报, 2017, 62(35):4169-4178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172018010300039726

    CHEN Ting, PANG Jun, HE Hong, PENG Yun, WU Nan, XU Jian, DU Cheng-xu, PANG Xing-xing, WU Zhi-min, CUI Yu-ting. Photoelectric properties of Mn-doped LiMgP new diluted magnetic semiconductor (in Chinese)[J]. Chin Sci Bull, 2017, 62(35):4169-4178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172018010300039726
    [29]
    ALEJANDRO M R, MORENO M G, TAKEUCHI N. First principles calculations of the electronic properties of bulk Cu2O, clean and doped with Ag, Ni, and Zn[J]. Solid State Sci, 2003, 5(2):291-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=37735b0ef8ee499379e4b148921ecc2b
    [30]
    XIA S, LIU L, KONG Y, DIAO Y. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer[J]. Chem Phys Lett, 2016, 663:90-96. doi: 10.1016/j.cplett.2016.09.074
    [31]
    SAHA S, SINHA T P, MOOKERJEE A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Phys Rev B, 2000, 62(13):699-702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4201a705a9fd66c80f9fcdbcae931588
    [32]
    LI L, WANG W, LIU H, LIU X, SONG Q, REN S. First principles calculations of electronic band structure and optical properties of Cr-doped ZnO[J]. J Phys Chem C, 2009, 113(19):8460-8464. doi: 10.1021/jp811507r
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return