Volume 45 Issue 12
Dec.  2017
Turn off MathJax
Article Contents
LI Wei, ZHANG Cheng, LI Xin, TAN Peng, FANG Qing-yan, CHEN Gang. Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1508-1513.
Citation: LI Wei, ZHANG Cheng, LI Xin, TAN Peng, FANG Qing-yan, CHEN Gang. Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1508-1513.

Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst

Funds:

the National Natural Science Foundation of China 51676076

National International Science and Technology Cooperation Project 2015DFA60410

More Information
  • Corresponding author: ZHANG Cheng, Tel:027-87542417-8321, Fax:027-87545526, E-mail:chengzhang@mail.hust.edu.cn
  • Received Date: 2017-07-11
  • Rev Recd Date: 2017-09-25
  • Available Online: 2021-01-23
  • Publish Date: 2017-12-10
  • A series low temperature SCR catalysts Mn0.4Ce0.07Hox/TiO2 catalysts with different Ho doping ratios were prepared by impregnation method. The effects of Ho doping on the denitrification of Mn-Ce/TiO2 low temperature SCR catalyst were studied. The catalysts were characterized by using X-ray photoelectron spectroscopy (XPS), X-ray fluorescence probe (XRF), Brunauer-Emmett-Teller (BET) surface measurement, X-ray diffraction (XRD) and NH3-temperature programmed desorption (NH3-TPD). The results showed that the doping of Ho can improve the low temperature denitrification performance of Mn-Ce/TiO2 catalyst. The catalytic efficiency of Mn0.4Ce0.07Ho0.1/TiO2 with the ratio of Ho:Ti=0.1 reached 91.17% at 200℃, which is the highest during the process. The catalytic efficiency could reach more than 80% at 140-240℃. The characterization results showed that Ho doping can increase the surface area of the catalyst, increase the concentration of chemisorbed oxygen in the catalyst and increase the deposition amount of Ce on the catalyst surface.
  • loading
  • [1]
    商雪松, 陈进生, 赵金平, 张福旺, 徐亚, 徐琪. SCR脱硝催化剂失活及其原因研究[J].燃料化学学报, 2011, 39(6): 465-470. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17761.shtml

    SHANG Xue-song, CHEN Jin-sheng, ZHAO Jin-ping, ZHANG Fu-wang, XU Ya, XU Qi. Discussion on the deactivation of SCR denitrification catalyst and its reasons[J]. J Fuel Chem Technol, 2011, 39(6): 465-470. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17761.shtml
    [2]
    BUSCA G, LIETTI L, RAMIS G, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998, 18(1/2): 1-36. http://www.sciencedirect.com/science/article/pii/S092633739800040X
    [3]
    LIU G, GAO P X. A review of NOx storage/reduction catalysts: Mechanism, materials and degradation studies[J]. Catal Sci Technol, 2011, 1(4): 552-568. doi: 10.1039/c1cy00007a
    [4]
    郑足红, 童华, 童志权, 黄妍, 罗晶. Mn-V-Ce/TiO2低温催化还原NO性能研究[J].燃料化学学报, 2010, 38(3): 343-351. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17588.shtml

    ZHENG Zu-hong, TONG Hua, TONG Zhi-quan, HUANG Yan, LUO Jin. Catalytic reduction of NO over Mn-V-Ce/TiO2 catalysts at low reaction temperature[J]. J Fuel Chem Technol, 2010, 38(3): 343-351. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract17588.shtml
    [5]
    JIN R B, LIU Y, WANG Y, CEN W L, WU Z B, WANG H Q, WENG X L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B: Environ, 2014, 148-149(4): 582-588.
    [6]
    闫东杰, 玉亚, 徐颖, 黄学敏. Mn、Ce负载顺序对催化剂Mn-Ce/TiO2低温脱硝活性的影响[J].化工进展, 2015, 34(6): 1652-1655. http://www.hgjz.com.cn/CN/abstract/abstract17332.shtml

    YAN Dong-jie, YU Ya, XU Ying, HUANG Xue-min. Effect of loading sequence of Mn and Ce on the activity of Mn-Ce/TiO2 catalysts at low-temperature[J]. Chem Ind Eng Prog, 2015, 34(6): 1652-1655. http://www.hgjz.com.cn/CN/abstract/abstract17332.shtml
    [7]
    郑玉婴, 汪谢. Mn基低温SCR脱硝催化剂的研究进展[J].功能材料, 2014, 45(11): 11008-11012. doi: 10.3969/j.issn.1001-9731.2014.11.002

    ZHENG Yu-ying, WANG Xie. Research progress on Mn-based catalysts for low-temperature selective catalytic reduction of NOx[J]. J Funct Mater, 2014, 45(11): 11008-11012. doi: 10.3969/j.issn.1001-9731.2014.11.002
    [8]
    REDDY B M, KHAN A. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman And XPS techniques[J]. J Phys Chem B, 2003, 107(22): 5162-5167. doi: 10.1021/jp0344601
    [9]
    XU G Y, WANG Y T, YANG Y, FU Y, GOU X, WU J X. Experimental research on NH3-SCR performance of Mn-Ce/TiO2 Catalyst[C]//International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology. 2016, 418-421. https://www.researchgate.net/publication/301641598_Experimental_Research_on_NH3-SCR_Performance_of_Mn-CeTiO2_Catalyst
    [10]
    SHENG Z Y, HU Y F, XUE J M, WANG X M, LIAO W P. A novel co-precipitation method for preparation of Mn-Ce/TiO2 composites for NOx reduction with NH3 at low temperature[J]. Environ Technol, 2012, 33(21): 2421. doi: 10.1080/09593330.2012.671370
    [11]
    SHEN B X, LIU T, ZHAO N, YING X Y, DENG L D. Iron doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. J Environ Sci (China), 2010, 22(9): 1447-1454. doi: 10.1016/S1001-0742(09)60274-6
    [12]
    SIMAS A M, FREIRE R O, ROCHA G B. Lanthanide coordination compounds modeling: Sparkle/PM3 parameters for dysprosium (Ⅲ), holmium (Ⅲ) and erbium (Ⅲ)[J]. J Organomet Chem, 2008, 693(10): 1952-1956. doi: 10.1016/j.jorganchem.2008.01.029
    [13]
    CAI H S, LIU G G, LU W Y, LI X X, YU L, LI D G. Effect of Ho-doping on photocatalytic activity of nanosized TiO2[J]. Catalyst, 2008, 26(1): 71-75. http://www.cqvip.com/QK/84120X/200801/26698841.html
    [14]
    SHI J W, ZHENG J T, HU Y, ZHAO Y C. Influence of Fe3+ and Ho3+ co-doping on the photocatalytic activity of TiO2[J]. Mater Chem Phys, 2007, 106(2/3): 247-249. http://www.sciencedirect.com/science/article/pii/S0254058407003677
    [15]
    SHI J W, ZHENG J T, WU P. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles[J]. J Hazard Mater, 2009, 161(1): 416-422. doi: 10.1016/j.jhazmat.2008.03.114
    [16]
    ZHU Y W, ZHANG Y P, XIAO R, HUANG T J, SHEN K. Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR[J]. Catal Commun, 2017, 88: 64-67. doi: 10.1016/j.catcom.2016.09.031
    [17]
    SAQER S M, , KONDARIDES D I, VERYKIOS X E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3[J]. Appl Catal B: Environ, 2011, 103(3/4): 275-286. http://www.sciencedirect.com/science/article/pii/S0926337311000099
    [18]
    张晓鹏, 沈伯雄. Mn/Ce-ZrO2催化剂低温NH3-SCR脱硝性能研究[J].燃料化学学报, 2013, 41(1): 123-128. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18111.shtml

    ZHANG Xiao-peng, SHEN Bo-xiong. Selective catalytic reduction of NO with NH3 over Mn-based catalysts at low temperature[J]. J Fuel Chem Technol, 2013, 41(1): 123-128. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18111.shtml
    [19]
    WU Z B, JIN R B, LIU Y, WANG H Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun, 2008, 9(13): 2217-2220. doi: 10.1016/j.catcom.2008.05.001
    [20]
    LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009, 93(1/2): 194-204. http://www.researchgate.net/publication/228958220_Effect_of_manganese_substitution_on_the_structure_and_activity_of_iron_titanate_catalyst_for_the_selective_catalytic_reduction_of_NO_with_NH3
    [21]
    金瑞奔. 负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究[D]. 浙江: 浙江大学, 2010. http://d.wanfangdata.com.cn/Thesis/Y1713847

    JIN Rui-beng. Low temperature SCR study on preparation, reaction mechanism and anti-sulfur performance of supported Mn-Ce series catalyst[D]. Zhejiang: Zhejiang University, 2010. http://d.wanfangdata.com.cn/Thesis/Y1713847
    [22]
    BONINGARI, T, ETTIREDDY P R, SOMOGYVARI A, LIU Y, VORONTSOV A, MCDONALD C A, SMIRNIOTIS P G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J]. J Catal, 2015, 325: 145-155. doi: 10.1016/j.jcat.2015.03.002
    [23]
    廖永进, 张亚平, 余岳溪, 李娟, 郭婉秋, 汪小蕾. MnOx/WO3/TiO2低温选择性催化还原NOx机理的原位红外研究[J].化工学报, 2016, 67(12): 5031-5039. http://www.cqvip.com/QK/90316X/201612/670745059.html

    LIAO Yong-jin, ZHANG Ya-ping, YU Yue-xi, LI Juan, GUO Wang-qiu, WANG Xiao-lei. In situ FT-IR studies on low temperature NH3-SCR mechanism of NOx over MnOx/WO3/TiO2 catalyst[J]. CIESC J, 2016, 67(12): 5031-5039. http://www.cqvip.com/QK/90316X/201612/670745059.html
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return