Volume 47 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, YE Yuan-song, LOU Ben-yong, ZHENG Guo-cai, LIN Qi. CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 464-473.
Citation: ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, YE Yuan-song, LOU Ben-yong, ZHENG Guo-cai, LIN Qi. CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 464-473.

CuO/ZrO2 catalysts for the production of H2 through the water-gas shift reaction: Effect of calcination temperature of ZrO2

Funds:

the National Natural Science Foundation of China 21503105

Natural Science Foundation of Fujian Province 2017J05025

Natural Science Foundation of Fujian Province 2017J01584

Project for Outstanding Young Talents of Fujian Provincial Universities 2016

JK Project of the Education Department of Fujian Province JK2015038

Scientific Research Foundation from Minjiang University MJY17003

More Information
  • Corresponding author: ZHANG Yan-jie, Tel: +86-591-83761630, E-mail: yanjiezhang@mju.edu.cn; LIN Qi, Tel: +86-591-83761630, E-mail: qlin1990@163.com
  • Received Date: 2018-12-17
  • Rev Recd Date: 2018-12-27
  • Available Online: 2021-01-23
  • Publish Date: 2019-04-10
  • A series of CuO/ZrO2 catalysts were prepared by a deposition-precipitation method using ZrO2 calcined at various temperatures (120, 250, 350 and 450℃) as supports. The water-gas shift (WGS) reaction was carried out on these catalysts using H2 rich reactant gas (15% CO, 55% H2, 23% N2, 7% CO2). It was shown that the catalytic activity of the catalysts increased at first and then decreased with increasing calcination temperature of ZrO2. The catalyst supported on ZrO2 calcined at 250℃ showed the highest catalytic activity. The structure and reducibility of CuO/ZrO2 catalysts were studied by various techniques, such as XRD, N2-physisorption, N2O titration, H2-TPR and CO-TPR-MS. The results show that the Cu dispersion and the proportion of catalytically active Cu-[O]-Zr species ("[]" represents an oxygen vacancy on ZrO2 support) decrease with the increase of ZrO2 calcination temperature. The calcination of ZrO2 at higher temperature leads to an improvement of the reducibility of Cu-[O]-Zr species and hydroxyl groups on the CuO/ZrO2 catalysts, resulting in an easier onset of the surface WGS reaction between surface hydroxyl groups and CO reductant. The two factors reach a balance for the catalyst supported on ZrO2 calcined at 250℃ (moderate temperature), as is thought to be responsible for the highest WGS activity of this catalyst.
  • loading
  • [1]
    LEVALLEY T L, RICHARD A R, FAN M. The progress in water gas shift and steam reforming hydrogen production technologies-A review[J]. Int J Hydrogen Energy, 2014, 39(30):16983-17000. doi: 10.1016/j.ijhydene.2014.08.041
    [2]
    YAO S, ZHANG X, ZHOU W, GAO R, XU W, YE Y, LIN L, WEN X, LIU P, CHEN B, CRUMLIN E, GUO J, ZUO Z, LI W, XIE J, LU L, KIELY C J, GU L, SHI C, RODRIGUEZ J A, MA D. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science, 2017, 357(6349):389-393. doi: 10.1126/science.aah4321
    [3]
    STERE C E, ANDERSON J A, CHANSAI S, DELGADO J J, GOGUET A, GRAHAM W G, HARDACRE C, TAYLOR S F R, TU X, WANG Z Y, YANG H. Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis[J]. Angew Chem Int Ed, 2017, 56(20):5579-5583. doi: 10.1002/anie.201612370
    [4]
    PAL D B, CHAND R, UPADHYAY S N, MISHRA P K. Performance of water gas shift reaction catalysts:A review[J]. Renewable Sustainable Energy Rev, 2018, 93:549-565. doi: 10.1016/j.rser.2018.05.003
    [5]
    ABDEL-MAGEED A M, KUCEROVA G, BANSMANN J, BEHM R J. Active Au species during the low-temperature water gas shift reaction on Au/CeO2:A time-resolved operando XAS and DRIFTS study[J]. ACS Catal, 2017, 7(10):6471-6484. doi: 10.1021/acscatal.7b01563
    [6]
    PALMA V, PISANO D, MARTINO M. Structured noble metal-based catalysts for the WGS process intensification[J]. Int J Hydrogen Energy, 2018, 43(26):11745-11754. doi: 10.1016/j.ijhydene.2018.01.085
    [7]
    AMMAL S C, HEYDEN A. Water-gas shift activity of atomically dispersed cationic platinum versus metallic platinum clusters on titania supports[J]. ACS Catal, 2017, 7(1):301-309. doi: 10.1021/acscatal.6b02764
    [8]
    GUAN H L, LIN J, QIAO B T, MIAO S, WANG A Q, WANG X D, ZHANG T. Enhanced performance of Rh1/TiO2 catalyst without methanation in water-gas shift reaction[J]. AIChE J, 2017, 63(6):2081-2088. doi: 10.1002/aic.v63.6
    [9]
    MA Y J, LIU B, JING M M, ZHANG R Y, CHEN J Y, ZHANG Y H, LI J L. Promoted potassium salts based Ru/AC catalysts for water gas shift reaction[J]. Chem Eng J, 2016, 287:155-161. doi: 10.1016/j.cej.2015.10.119
    [10]
    LIN J, WANG A Q, QIAO B T, LIU X Y, YANG X F, WANG X D, LIANG J X, LI J X, LIU J Y, ZHANG T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction[J]. J Am Chem Soc, 2013, 135(41):15314-15317. doi: 10.1021/ja408574m
    [11]
    XU M, YAO S, RAO D, NIU Y, LIU N, PENG M, ZHAI P, MAN Y, ZHENG L, WANG B, ZHANG B, MA D, WEI M. Insights into interfacial synergistic catalysis over Ni@TiO2-x catalyst toward water-gas shift reaction[J]. J Am Chem Soc, 2018, 140(36):11241-11251. doi: 10.1021/jacs.8b03117
    [12]
    ZHANG Z, WANG S S, SONG R, CAO T, LUO L, CHEN X, GAO Y, LU J, LI W X, HUANG W. The most active Cu facet for low-temperature water gas shift reaction[J]. Nat Commun, 2017, 8:488. doi: 10.1038/s41467-017-00620-6
    [13]
    YAN H, QIN X T, YIN Y, TENG Y F, JIN Z, JIA C J. Promoted Cu-Fe3O4 catalysts for low-temperature water gas shift reaction:Optimization of Cu content[J]. Appl Catal B:Environ, 2018, 226:182-193. doi: 10.1016/j.apcatb.2017.12.050
    [14]
    CHEN C, ZHAN Y, LI D, ZHANG Y, LIN X, JIANG L, ZHENG Q. Preparation of CuO/CeO2 catalyst with enhanced catalytic performance for water-gas shift reaction in hydrogen production[J]. Energy Technol, 2018, 6(6):1096-1103. doi: 10.1002/ente.201700750
    [15]
    CHEN C, ZHAN Y, ZHOU J, LI D, ZHANG Y, LIN X, JIANG L, ZHENG Q. Cu/CeO2 catalyst for water-gas shift reaction:Effect of CeO2 pretreatment[J]. ChemPhysChem, 2018, 19(12):1448-1455. doi: 10.1002/cphc.v19.12
    [16]
    MA Y J, LIU B, OUYANG B, LI J L. Production of hydrogen from water-gas shift reaction over Ru-[BMIM]BF4/ZnO catalyst[J]. Int J Hydrogen Energy, 2017, 42(7):4146-4154. doi: 10.1016/j.ijhydene.2016.10.111
    [17]
    LI J, TA N, SONG W, ZHAN E, SHEN W. Au/ZrO2 catalysts for low-temperature water gas shift reaction:Influence of particle sizes[J]. Gold Bull, 2009, 42(1):48-60. doi: 10.1007/BF03214905
    [18]
    CERÍN M L, HERRERA B, ARAYA P, GRACIA F, TORO-LABBÉ A. Influence of the monoclinic and tetragonal zirconia phases on the water gas shift reaction. A theoretical study[J]. J Mol Model, 2013, 19(7):2885-2891. doi: 10.1007/s00894-012-1706-7
    [19]
    KOUVA S, HONKALA K, LEFFERTS L, KANERVO J. Review:Monoclinic zirconia, its surface sites and their interaction with carbon monoxide[J]. Catal Sci Technol, 2015, 5:3473-3490. doi: 10.1039/C5CY00330J
    [20]
    KAUPPIK E I, HONKALA K, KRAUSE A O I, KANERVO J M, LEFFERTS L. ZrO2 acting as a redox catalyst[J]. Top Catal, 2016, 59(8/9):823-832. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fe5103b646f97db090f7759469cbe80
    [21]
    DOW W P, HUANG T J. Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst[J]. J Catal, 1994, 147(1):322-332. doi: 10.1006/jcat.1994.1143
    [22]
    KO J B, BAE C M, JUNG Y S, KIM D H. Cu-ZrO2 catalysts for water-gas-shift reaction at low temperatures[J]. Catal Lett, 2005, 105(3/4):157-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe19c33dbc1930256b29d99efdb62526
    [23]
    CHEN C, RUAN C, ZHAN Y, LIN X, ZHENG Q, WEI K. The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water-gas-shift performance[J]. Int J Hydrogen Energy, 2014, 39(1):317-324. doi: 10.1016/j.ijhydene.2013.10.074
    [24]
    AGUILA G, VALENZUELA A, GUERRERO S, ARAY P. WGS activity of a novel Cu-ZrO2 catalyst prepared by a reflux method. Comparison with a conventional impregnation method[J]. Catal Commun, 2013, 39:82-85. doi: 10.1016/j.catcom.2013.05.007
    [25]
    TANG Q L, LIU Z P. Identification of the active Cu phase in the water-gas shift reaction over Cu/ZrO2 from first principles[J]. J Phys Chem C, 2010, 114(18):8423-8430. doi: 10.1021/jp100864j
    [26]
    张燕杰, 陈崇启, 詹瑛瑛, 林棋, 娄本勇, 郑国才, 郑起. Y修饰CuO/ZrO2催化剂高效催化水煤气变换反应制氢[J].燃料化学学报, 2017, 45(9):1137-1145. doi: 10.3969/j.issn.0253-2409.2017.09.015

    ZHANG Yan-jie, CHEN Chong-qi, ZHAN Ying-ying, LIN Qi, LOU Ben-yong, ZHENG Guo-cai, ZHENG Qi. Highly active Y-promoted CuO/ZrO2 catalysts for the production of hydrogen through water-gas shift reaction[J]. J Fuel Chem Technol, 2017, 45(9):1137-1145. doi: 10.3969/j.issn.0253-2409.2017.09.015
    [27]
    SONG L, CAO X B, LI L. Engineering stable surface oxygen vacancies on ZrO2 by hydrogen-etching technology:An efficient support of gold catalysts for water-gas shift reaction[J]. ACS Appl Mater Interfaces, 2018, 10(37):31249-31259. doi: 10.1021/acsami.8b07007
    [28]
    ZHANG Y, ZHAN Y, CHEN C, CAO Y, LIN X, ZHENG Q. Highly efficient Au/ZrO2 catalysts for low-temperature water-gas shift reaction:Effect of pre-calcination temperature of ZrO2[J]. Int J Hydrogen Energy, 2012, 37(17):12292-12300. doi: 10.1016/j.ijhydene.2012.06.025
    [29]
    ZHANG Y, CHEN C, LIN X, LI D, CHEN X, ZHAN Y, ZHENG Q. CuO/ZrO2 catalysts for water-gas shift reaction:Nature of catalytically active copper species[J]. Int J Hydrogen Energy, 2014, 39(8):3746-3754. doi: 10.1016/j.ijhydene.2013.12.161
    [30]
    ZOU Z Q, MENG M, GUO L H, ZHA Y Q. Synthesis and characterization of CuO/Ce1-xTixO2 catalysts used for low-temperature CO oxidation[J]. J Hazard Mater, 2009, 163(2/3):835-842.
    [31]
    JACKSON S D, HARGREAVES J S J. Metal oxide catalysis (Vol.2)[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
    [32]
    KWAK J H, HU J, MEI D, YI C, KIM D H, PEDEN C H F, ALLARD L F, SZANYI J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J]. Science, 2009, 325(5948):1670-1673. doi: 10.1126/science.1176745
    [33]
    SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption date for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985, 57(4):603-619. doi: 10.1351/pac198557040603
    [34]
    WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts:Effects of zirconia phases[J]. Chem Eng J, 2016, 293:327-336. doi: 10.1016/j.cej.2016.02.069
    [35]
    HEEMEIER M, FRANK M, LIBUDA J, WOLTER K, KUHLENBECK H, BAUMER M, FREUND H J. The influence of OH groups on the growth of rhodium on alumina:A model study[J]. Catal Lett, 2000, 68(1/2):19-24. doi: 10.1023/A:1019058714724
    [36]
    ZHANG X, SHI H, XU B. Vital roles of hydroxyl groups and gold oxidation states in Au/ZrO2 catalysts for 1, 3-butadiene hydrogenation[J]. J Catal, 2011, 279(1):75-87. doi: 10.1016/j.jcat.2011.01.002
    [37]
    ZHAI Y, PIERRE D, SI R, DENG W, FERRIN P, NILEKAR A U, PENG G, HERRON J A, BELL D C, SALTSBURG H, FLYTZANI-STEPHANOPOULOS M. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions[J]. Science, 2010, 329(5999):1633-1636. doi: 10.1126/science.1192449
    [38]
    SI R, RAITANO J, YI N, ZHANG L, CHAN S, FLYTZANI-STEPHANOPOULOS M. Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts[J]. Catal Today, 2012, 180(1):68-80. doi: 10.1016/j.cattod.2011.09.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return