Volume 47 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
YAN Zheng-hao, HE Run-xia, WANG Dan-dan, BAN Yan-peng, SONG Yin-min, LI Na, LIU Quan-sheng. Study on the transformation characteristics of microstructure in Shengli lignite during low-temperature oxidation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 411-418.
Citation: YAN Zheng-hao, HE Run-xia, WANG Dan-dan, BAN Yan-peng, SONG Yin-min, LI Na, LIU Quan-sheng. Study on the transformation characteristics of microstructure in Shengli lignite during low-temperature oxidation[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 411-418.

Study on the transformation characteristics of microstructure in Shengli lignite during low-temperature oxidation

Funds:

the National Natural Science Foundation of China 21566028

the National Natural Science Foundation of China 21676149

More Information
  • Corresponding author: HE Run-xia, E-mail: runxiahe@imut.edu.cn; LIU Quan-sheng, E-mail:liuqs@imut.edu.cn
  • Received Date: 2018-11-12
  • Rev Recd Date: 2019-01-31
  • Available Online: 2021-01-23
  • Publish Date: 2019-04-10
  • A Shengli lignite from Inner Mongolia was selected as the research object, with which the low-temperature oxidation experiments were carried out at different temperatures (200-300℃) in a fixed bed reactor. The structure of coal samples after oxidation treatment was characterized by FT-IR, Raman and XPS. The effects of low-temperature oxidation at different temperatures on the microstructure and mass change of lignite were investigated and the combustion performance was determined by TGA. The results show that the temperature has a significant influence on mass change rate of Shengli lignite during low-temperature oxidation. The mass change rate of lignite is very limited when temperature is below 220℃ and it changes obviously when the temperature is higher than 220℃. Especially at 220-230℃, the mass change rate of coal samples is changed from 5.80% (220℃) to 42.55% (230℃). The FT-IR/Raman/XPS characterization results show that the analogous benzoquinone structure forms after oxidized at 220℃, and these lead to the stretching vibration absorption peak of the aromatic C=C shift to lower wavenumber. In Raman spectra, the position of the D peak shifts, and the distance between the peaks of D and G increases. The content of C-O-and C=O on the surface of coal samples increases at oxidation temperature lower than 220℃. It is speculated that the jump of mass change rate of coal samples at 220-230℃ is mainly related to the oxidative decomposition of analogous benzoquinone structure.
  • loading
  • [1]
    宋洪柱.中国煤炭资源分布特征与勘查开发前景研究[D].北京: 中国地质大学, 2013.

    SONG Hong-zhu. Study on the distribution characteristics and the exploration and development prospect of coal resource of China[D]. Beijing: China University of Geosciences, 2013.
    [2]
    王美君, 付春慧, 常丽萍, 谢克昌.逐级酸处理对锡盟褐煤的结构及热解特性的影响[J].燃料化学学报, 2012, 40(8):906-911. doi: 10.3969/j.issn.0253-2409.2012.08.002

    WANG Mei-jun, FU Chun-hui, CHANG Li-ping, XIE Ke-chang. Effect of fractional step acid treatment process on the structure and pyrolysis characteristics of Ximeng brown coal[J]. J Fuel Chem Technol, 2012, 40(8):906-911. doi: 10.3969/j.issn.0253-2409.2012.08.002
    [3]
    BARIS K, KIZGUT S, DIDARI V. Low-temperature oxidation of some Turkish coals[J]. Fuel, 2012, 93(1):423-432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=831bc32a28cb96681ea1032249e29606
    [4]
    KUCUK A, KADIOGLU Y, GULABOGLU M S. A study of spontaneous combustion characteristics of a Turkish lignite:Particle size, moisture of coal, humidity of air[J]. Combust Flame, 2003, 133(3):255-261. doi: 10.1016/S0010-2180(02)00553-9
    [5]
    SU H T, ZHOU F B, LI J S, QI H N. Effects of oxygen supply on low-temperature oxidation of coal:A case study of Jurassic coal in Yima, China[J]. Fuel, 2017, 202, 446-454. doi: 10.1016/j.fuel.2017.04.055
    [6]
    周沛然.煤低温氧化结构变化的红外光谱研究[J].煤炭转化, 2014, 37(1):15-18. doi: 10.3969/j.issn.1004-4248.2014.01.004

    ZHOU Pei-ran. Infrared spectroscopy study on the change of low temperature oxidation structure of coal[J]. Coal Convers, 2014, 37(1):15-18. doi: 10.3969/j.issn.1004-4248.2014.01.004
    [7]
    LI B, CHEN G, ZHANG H, SHENG G D. Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition[J]. Fuel, 2014, 118(8):385-391. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aae26c0de8ceac91d43860c3c6a9f5a1
    [8]
    ZHOU C H, ZHANG Y L, WANG J F, XUE S, WU J M, CHANG L P. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal[J]. Int J Coal Geol, 2017, 171:212-222. doi: 10.1016/j.coal.2017.01.013
    [9]
    QI X Y, CHEN L Z, ZHANG L B, BAI C W, XIN H H, RAO Z. In situ FT-IR study on real-time changes of active groups during lignite reaction under low oxygen concentration conditions[J]. J Energy Inst, 2018, 1-10.
    [10]
    WANG H, DLUGOGORSKI B Z, KENNEDY E M. Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures[J]. Fuel, 2002, 81(15):1913-1923. doi: 10.1016/S0016-2361(02)00122-9
    [11]
    薛冰, 李再峰, 陈兴权, 李永昕, AGARWAL P K.低阶煤在干燥氧气下低温氧化过程的机理研究[J].煤炭转化, 2006, 29(2):12-15. doi: 10.3969/j.issn.1004-4248.2006.02.004

    XUE Bing, LI Zai-feng, CHEN Xing-quan, LI Yong-xin, AGARWAL P K. Mechanism study on low temperature oxidation process of low rank coal under dry oxygen[J]. Coal Convers, 2006, 29(2):12-15. doi: 10.3969/j.issn.1004-4248.2006.02.004
    [12]
    葛岭梅, 薛韩玲, 徐精彩, 邓军, 张辛亥.对煤分子中活性基团氧化机理的分析[J].煤炭转化, 2001, 24(3):23-28. doi: 10.3969/j.issn.1004-4248.2001.03.006

    GE Ling-mei, XUE Han-ling, XU Jing-cai, DENG Jun, ZHANG Xin-hai. Analysis of the oxidation mechanism of reactive groups in coal molecules[J]. Coal Convers, 2001, 24(3):23-28. doi: 10.3969/j.issn.1004-4248.2001.03.006
    [13]
    王彩萍, 邓军, 王伟峰.煤低温氧化过程中活性基团的FT-IR实验研究[J].电子世界, 2012, (18):74-75.

    WANG Cai-ping, DENG Jun, WANG Wei-feng. FT-IR experimental study of active groups in low temperature oxidation of coal[J]. Electron World, 2012, (18):74-75.
    [14]
    李涛, 张辛亥, 吴康华, 王楠.煤低温氧化的红外光谱研究[J].价值工程, 2011, 30(21):32-33. doi: 10.3969/j.issn.1006-4311.2011.21.022

    LI Tao, ZHANG Xin-hai, WU Kang-hua, WANG Nan. Research on coal low temperature oxidation with FTIR[J]. Value Eng, 2011, 30(21):32-33. doi: 10.3969/j.issn.1006-4311.2011.21.022
    [15]
    褚廷湘, 杨胜强, 孙燕, 孙京凯, 刘增平.煤的低温氧化实验研究及红外光谱分析[J].中国安全科学学报, 2008, 18(1):171-177. doi: 10.3969/j.issn.1003-3033.2008.01.030

    CHU Ting-xiang, YANG Sheng-qiang, SUN Yan, SUN Jing-kai, LIU Zeng-ping. Experimental study on low temperature oxidization of coal and its infrared spectrum analysis[J]. CSSJ, 2008, 18(1):171-177. doi: 10.3969/j.issn.1003-3033.2008.01.030
    [16]
    WANG G H, ZHOU A N. Time evolution of coal structure during low temperature air oxidation[J]. Int J Min Sci Technol, 2012, 22(4):517-521. doi: 10.1016/j.ijmst.2012.01.013
    [17]
    QI X Y, WANG D M, XIN H H, QI G S. An in situ testing method for analyzing the changes of active groups in coal oxidation at low temperatures[J]. Spectr Lett, 2014, 47(7):495-503. doi: 10.1080/00387010.2013.817433
    [18]
    FUJITSUKA H, ASHIDA R, KAWASE M, MIURA K. Examination of low-temperature oxidation of low-rank coals, aiming at understanding their self-ignition tendency[J]. Energy Fuels, 2014, 28(4):2402-2407. doi: 10.1021/ef402484u
    [19]
    董庆年, 陈学艺, 靳国强, 顾永达.红外发射光谱法原位研究褐煤的低温氧化过程[J].燃料化学学报, 1997, 25(4):333-338. http://www.cnki.com.cn/Article/CJFDTotal-RLHX704.009.htm

    DONG Qing-nian, CHEN Xue-yi, JIN Guo-qiang, GU Yong-da. In-situ study of low temperature oxidation of lignite by infrared emission spectroscopy[J]. J Fuel Chem Technol, 1997, 25(4):333-338. http://www.cnki.com.cn/Article/CJFDTotal-RLHX704.009.htm
    [20]
    宋银敏, 李娜, 班延鹏, 滕英跃, 智科端, 何润霞, 周华从, 刘全生.燃烧反应过程中胜利脱灰褐煤微结构演变特性研究[J].燃料化学学报, 2017, 45(12):1417-1423. doi: 10.3969/j.issn.0253-2409.2017.12.002

    SONG Yin-min, LI Na, BAN Yan-peng, TENG Ying-yue, ZHI Ke-duan, HE Run-xia, ZHOU Hua-cong, LIU Quan-sheng. Microstructure evolution characteristics of Shengli lignite during combustion process[J]. J Fuel Chem Technol, 2017, 45(12):1417-1423. doi: 10.3969/j.issn.0253-2409.2017.12.002
    [21]
    LI Y, WANG Z H, HUANG Z Y, LIU J Z, ZHOU J H, CEN K F. Effect of pyrolysis temperature on lignite char properties and slurrying ability[J]. Fuel Process Technol, 2015, 134:52-58. doi: 10.1016/j.fuproc.2015.01.007
    [22]
    石金明, 向军, 胡松, 孙路石, 苏胜, 徐朝芬, 许凯.洗煤过程中煤结构的变化[J].化工学报, 2010, 61:3220-3227. http://d.old.wanfangdata.com.cn/Periodical/hgxb201012028

    SHI Jin-ming, XIANG Jun, HU Song, SUN Lu-shi, SU Sheng, XU Chao-fen, XU Kai. Change of coal structure during washing process[J]. CIESC J, 2010, 61:3220-3227. http://d.old.wanfangdata.com.cn/Periodical/hgxb201012028
    [23]
    YURUM Y, ALTUNTAS N. Air oxidation of Beypazari lignite at 50℃, 100℃ and 150℃[J]. Fuel, 1998, 77(15):1809-1814. doi: 10.1016/S0016-2361(98)00067-2
    [24]
    WU Q S, LI S P. Effect of surfactant/silica and hydrothermal time on the specific surface area of mesoporous materials from coal-measure kaolin[J]. J Wuhan Univ Technol, 2011, 26(3):514-518. doi: 10.1007/s11595-011-0259-4
    [25]
    FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20):14095-14107. doi: 10.1103/PhysRevB.61.14095
    [26]
    FERREIRA E H M, MOUTINHO M V O, STAVALE F, LUCCHESE M M. CAPAZ R B, ACHETE C A, JORIO A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder[J]. Phys Rev B, 2010, 82(12):4079-4085. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3220e92375a7840adf6c13947e830952
    [27]
    陈旺, 焦娜, 徐樑华, 曹维宇.碳纤维在石墨化处理过程中的sp2结构转变[J].宇航材料工艺, 2013, 43(5):46-48. doi: 10.3969/j.issn.1007-2330.2013.05.010

    CHEN Wang, JIAO Na, XU Liang-hua, CAO Wei-yu. Transition of sp2 hybridization structure during graphitization of carbon fiber[J]. Aerosp Mater Technol, 2013, 43(5):46-48. doi: 10.3969/j.issn.1007-2330.2013.05.010
    [28]
    LI X J, HAYASHI J, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10):1518-1525.
    [29]
    DATSYUK V, GUERRET-PIECOURT C, DAGREOU S, BILLON L, DUPIN J C, FLAHAUT E, PEIGNEY A, LAURENT C. Double walled carbon nanotube/polymer composites via in situ nitroxide mediated polymerisation of amphiphilic block copolymers[J]. Carbon, 2005, 43(4):873-876. doi: 10.1016/j.carbon.2004.10.052
    [30]
    ZHANG N, XIE J, VARADAN V. Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst[J]. Smart Mater Struct, 2002, 11(6):962-965. doi: 10.1088/0964-1726/11/6/318
    [31]
    AGO H, KUGLER T, CACIALLI F, SALANECK W R, SHAFFER M S P, WINDLE A H, FRIEND R H. Work functions and surface functional groups of multiwall carbon nanotubes[J]. J Phys Chem B, 1999, 103(38):8116-8121. doi: 10.1021/jp991659y
    [32]
    常海洲, 王传格, 曾凡桂, 李军, 李文英, 谢克昌.不同还原程度煤显微组分组表面结构XPS对比分析[J].燃料化学学报, 2006, 34(4):389-394. doi: 10.3969/j.issn.0253-2409.2006.04.002

    CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparative analysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006, 34(4):389-394. doi: 10.3969/j.issn.0253-2409.2006.04.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (98) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return