Volume 44 Issue 12
Dec.  2016
Turn off MathJax
Article Contents
ZHANG Xiao-hong, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1464-1472.
Citation: ZHANG Xiao-hong, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1464-1472.

Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass

More Information
  • Corresponding author: wucz@ms.giec.ac.cn
  • Received Date: 2016-06-23
  • Rev Recd Date: 2016-09-15
  • Available Online: 2021-01-23
  • Publish Date: 2016-12-10
  • The release of NOx precursors (NH3, HCN and HNCO) in the pyrolysis of two nitrogen-rich biomass materials, viz., soybean straw (SBS) and fiberboard (FB), were investigated by thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR, for slow pyrolysis) and horizontal tubular reactor-X-ray photoelectron spectroscopy (HTR-XPS, for rapid pyrolysis); the effects of final temperature, heating rate and nitrogen form in biomass on the release characteristic were considered. The results indicate that the evolution pathway is related to the form of nitrogen in biomass; nitrogen in SBS (SBS-N) is mainly converted to NH3 during the secondary cracking reaction, whereas nitrogen in FB (FB-N) is transformed to NH3, HCN (rapid) and HNCO (slow) during the primary pyrolysis reaction. Nitrogen in biomass (fuel-N) is inclined to convert to nitrogen in char (char-N) at low temperature and to nitrogen in tar (tar-N) or NOx precursors at high temperature (>600℃), which suggests that a pyrolysis temperature below 600℃ can suppress the release of NOx precursors. SBS-N and FB-N are characterized by protein and amide, respectively, which are partly converted to pyrrolic-N and pyridinic-N in char, forming preferably NH3 and HCN, respectively.
  • loading
  • [1]
    BALAT M.Mechanisms of thermochemical biomass conversion processes.Part 1:Reactions of pyrolysis[J].Energy Source Part A,2008,30(7):620-635. doi: 10.1080/15567030600817258
    [2]
    HANSSON K M,SAMUELSSON J,TULLIN C,AMAND L E.Formation of HNCO,HCN and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J].Combust Flame,2004,137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005
    [3]
    CAO J J,SHEN Z X,CHOW J C,WATSON J G,LEE S C,TIE X X,HO K F,WANG G H,HAN Y M.Winter and summer PM2.5 chemical compositions in fourteen Chinese cities[J].J Air Waste Manage,2012,62(10):1214-1226. doi: 10.1080/10962247.2012.701193
    [4]
    TIAN F J,LI B Q,CHEN Y,LI C Z.Formation of NOx precursors during the pyrolysis of coal and biomass.Part V.Pyrolysis of a sewage sludge[J].Fuel,2002,81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4
    [5]
    BECIDAN M,SKREIBERG O,HUSTAD J E.NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues[J].Energy Fuels,2007,21(2):1173-1180. doi: 10.1021/ef060426k
    [6]
    YUAN S,ZHOU Z J,LI J,CHEN X L,WANG F C.HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J].Energy Fuels,2010,24:6166-6171. doi: 10.1021/ef100959g
    [7]
    REN Q Q.NOx and N2O precursors from co-pyrolysis of biomass and sludge[J].J Therm Anal Calorim,2013,112(2):997-1002. doi: 10.1007/s10973-012-2645-3
    [8]
    HANSSON K M,SAMUELSSON J,AMAND L E,TULLIN C.The temperature's influence on the selectivity between HNCO and HCN from pyrolysis of 2,5-diketopiperazine and 2-pyridone[J].Fuel,2003,82(18):2163-2172. doi: 10.1016/S0016-2361(03)00206-0
    [9]
    REN Q Q,ZHAO C S,CHEN X P,DUAN L B,LI Y J,MA C Y.NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Co-pyrolysis of amino acids and cellulose,hemicellulose and lignin[J].Proc Combust Inst,2011,33:1715-1722. doi: 10.1016/j.proci.2010.06.033
    [10]
    REN Q Q,ZHAO C S.NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Interaction between amino acid and mineral matter[J].Appl Energy,2013,112:170-174. doi: 10.1016/j.apenergy.2013.05.061
    [11]
    谢光辉,王晓玉,韩东倩,薛帅.中国非禾谷类大田作物收获指数和秸秆系数[J].中国农业大学学报,2011,(1):9-17. http://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201101003.htm

    XIE Guang-hui,WANG Xiao-yu,HAN Dong-qian,XUE Shuai.Harvest index and residue factor of non-cereal crops in China[J].J China Agric Univers,2011,(1):9-17. http://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201101003.htm
    [12]
    张发安,张建辉.中密度纤维板企业环保措施[J].林产工业,2012,(2):35-37+40. http://www.cnki.com.cn/Article/CJFDTOTAL-LCGY201202012.htm

    ZHANG Fa-an,ZHANG Jian-hui.Environmental protection measures to be used in MDF enterprise[J].China Forest Products Indust,2012,(2):35-37+40. http://www.cnki.com.cn/Article/CJFDTOTAL-LCGY201202012.htm
    [13]
    HIRATA T,KAWAMOTO S,OKURO A.Pyrolysis of melamine formaldehyde and urea formaldehyde resins[J].J Appl Polym Sci,1991,42(12):3147-3163. doi: 10.1002/app.1991.070421208
    [14]
    VALENTIM B,GUEDES A,BOAVIDA D.Nitrogen functionality in "oil window" rank range vitrinite rich coals and chars[J].Org Geochem,2011,42(5):502-509. doi: 10.1016/j.orggeochem.2011.03.008
    [15]
    WEI L H,WEN L,YANG T H,ZHANG N.Nitrogen transformation during sewage sludge pyrolysis[J].Energy Fuels,2015,29(8):5088-5094. doi: 10.1021/acs.energyfuels.5b00792
    [16]
    ZHOU H,JENSEN A D,GLARBORG P,KAVALIAUSKAS A.Formation and reduction of nitric oxide in fixed-bed combustion of straw[J].Fuel,2006,85(5/6):705-716.
    [17]
    VERMEULEN I,BLOCK C,VANDECASTEELE C.Estimation of fuel-nitrogen oxide emissions from the element composition of the solid or waste fuel[J].Fuel,2012,94(1):75-80. https://www.researchgate.net/publication/256711753_Estimation_of_fuel-nitrogen_oxide_emissions_from_the_element_composition_of_the_solid_or_waste_fuel
    [18]
    EIGENMANN F,MACIEJEWSKI M,BAIKER A.Quantitative calibration of spectroscopic signals in combined TG-FTIR system[J].Thermochim Acta,2006,440(1):81-92. doi: 10.1016/j.tca.2005.10.018
    [19]
    ZHU H M,JIANG X G,YAN J H,CHI Y,CEN K F.TG-FTIR analysis of PVC thermal degradation and HCl removal[J].J Anal Appl Pyrolysis,2008,82(1):1-9. doi: 10.1016/j.jaap.2007.11.011
    [20]
    袁帅,李军,周志杰,王辅臣.吡啶型氮快速热解中HCN和NH3生成机理研究[J].燃料化学学报,2011,39(6):413-418. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17751.shtml

    YUAN Shuai,LI Jun,ZHOU Zhi-jie,WANG Fu-cheng.Mechanisms of HCN and NH3 formation during rapid pyrolysis of pyridinic nitrogen containing substances[J].J Fuel Chem Technol,2011,39(6):413-418. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17751.shtml
    [21]
    ZHU X D,YANG S J,WANG L,LIU Y C,QIAN F,YAO W Q,ZHANG S C,CHEN J M.Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J].Environ Pollut,2016,211:20-27. doi: 10.1016/j.envpol.2015.12.032
    [22]
    HANSSON K M,AMAND L E,HABERMANN A,WINTER F.Pyrolysis of poly-L-leucine under combustion-like conditions[J].Fuel,2003,82(6):653-660. doi: 10.1016/S0016-2361(02)00357-5
    [23]
    LEICHTNAM J N,SCHWARTZ D,GADIOU R.J.The behaviour of fuel-nitrogen during fast pyrolysis of polyamide at high temperature[J].J Anal Appl Pyrolysis,2000,55(2):255-268. doi: 10.1016/S0165-2370(00)00075-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (128) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return