Volume 46 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Abdulbaset M. Alayat, Elena Echeverria, David N. Mcllroy, Armando G. McDonald. Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 957-966.
Citation: Abdulbaset M. Alayat, Elena Echeverria, David N. Mcllroy, Armando G. McDonald. Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 957-966.

Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation

More Information
  • Corresponding author: Armando G. McDonald, E-mail: armandm@uidaho.edu
  • Received Date: 2018-06-14
  • Rev Recd Date: 2018-07-03
  • Available Online: 2021-01-23
  • Publish Date: 2018-08-10
  • The effect of ethylene diamine tetraacetic acid (EDTA) modification on the physico-chemical properties and catalytic performance of silica nanosprings (NS) supported cobalt (Co) catalyst was investigated in the conversion of syngas (H2 + CO) to hydrocarbons by Fischer-Tropsch synthesis (FTS). The unmodified Co/NS and modified Co/NS-EDTA catalysts were synthesized via an impregnation method. The prepared Co/NS and Co/NS-EDTA catalysts were characterized before the FTS reaction by BET surface area, X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), differential thermal analysis (DTA) and thermogravimetric analysis (TGA) in order to find correlations between physico-chemical properties of catalysts and catalytic performance. FTS was carried out in a quartz fixed-bed microreactor (H2/CO of 2:1, 230℃ and atmospheric pressure) and the products trapped and analyzed by GC-TCD and GC-MS to determine CO conversion and reaction selectivity. The experimental results indicated that the modified Co/NS-EDTA catalyst displayed a more-dispersed phase of Co3O4 nanoparticles (10.9%) and the Co3O4 average crystallite size was about 12.4 nm. The EDTA modified catalyst showed relatively higher CO conversion (70.3%) and selectivity toward C6-18 (JP-8, Jet A and diesel) than the Co/NS catalyst (C6-14) (JP-4).
  • loading
  • [1]
    ALAYAT A, MCLLROY D, MCDONALD A G. Effect of synthesis and activation methods on the catalytic properties of silica nanospring (NS)-supported iron catalyst for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2018, 169:132-141. doi: 10.1016/j.fuproc.2017.09.011
    [2]
    ZHAO Y H, SONG Y H, HAO Q Q, WANG Y J, WANG W, LIU Z T, ZHANG D, LIU Z W, ZHANG Q J, LU J. Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2015, 138:116-124. doi: 10.1016/j.fuproc.2015.05.019
    [3]
    XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun, 2011, 12(7):589-592. doi: 10.1016/j.catcom.2010.12.013
    [4]
    MOCHIZUKI T, HARA T, KOIZUMI N, YAMADA M. Novel preparation method of highly active Co/SiO2 catalyst for Fischer-Tropsch synthesis with chelating agents[J]. Catal Lett, 2007, 113(3/4):165-169. https://www.researchgate.net/publication/272631040_Fischer-Tropsch_Synthesis_over_CoSiO2_Catalysts_Modified_with_Ethylenediamine
    [5]
    BAMBAL A S. Study of the effect of surface modification and sulfur impurities in syngas on the Fischer-Tropsch performance of cobalt catalysts[J]. Morgantown:West Virginia University, 2012.
    [6]
    JI L, LIN J, TAN K, ZENG H. Synthesis of high-surface-area alumina using aluminum tri-sec-butoxide-2, 4-pentanedione-2-propanol-nitric acid precursors[J]. Chem materials, 2000, 12(4):931-939.
    [7]
    BAMBAL A S, KUGLER E L, GARDNER T H, DADYBURJOR D B. Effect of surface modification by chelating agents on Fischer-Tropsch performance of Co/SiO2 catalysts[J]. Ind Eng Chem Res, 2013, 52(47):16675-16688. doi: 10.1021/ie4019676
    [8]
    KOIZUMI N, IBI Y, HONGO D, HAMABE Y, SUZUKI S, HAYASAKA Y, SHINDO T, YAMADA M. Mechanistic aspects of the role of chelating agents in enhancing Fischer-Tropsch synthesis activity of Co/SiO2 catalyst:Importance of specific interaction of Co with chelate complex during calcination[J]. J Catal, 2012, 289:151-163. doi: 10.1016/j.jcat.2012.02.003
    [9]
    VALENCIA D, PENA L, UC VH, GARCÍA-CRUZ I. Metal-support interactions revisited by theoretical calculations:The influence of organic ligands for preparing Ni/SiO2 catalysts[J]. Appl Catal A:Gen, 2014, 475:134-139. doi: 10.1016/j.apcata.2014.01.018
    [10]
    REPO E, MALINEN L, KOIVULA R, HARJULA R, SILLANPÄÄ M. Capture of Co (Ⅱ) from its aqueous EDTA-chelate by DTPA-modified silica gel and chitosan[J]. J Hazardous Materials, 2011, 187(1/3):122-132.
    [11]
    KUMAR R, BARAKAT M, DAZA Y, WOODCOCK H, KUHN J. EDTA functionalized silica for removal of Cu (Ⅱ), Zn (Ⅱ) and Ni (Ⅱ) from aqueous solution[J]. J Colloid Interface Sci, 2013, 408:200-205. doi: 10.1016/j.jcis.2013.07.019
    [12]
    KUŚMIERZ M, PASIECZNA-PATKOWSKA S. FT-IR/PAS study of surface EDTA-ZnO interactions[J]. Annales UMCS, Chemia, 68(1/2):25-31.
    [13]
    MOCHIZUKI T, HARA T, KOIZUMI N, YAMADA M. Surface structure and Fischer-Tropsch synthesis activity of highly active Co/SiO2 catalysts prepared from the impregnating solution modified with some chelating agents[J]. Appl Catal A:Gen, 2007, 317(1):97-104. doi: 10.1016/j.apcata.2006.10.005
    [14]
    SAI V, GANGADEAN D, NIRAULA I, JABAL J M, CORTI G, MCILROY D, ERIC ASTON D, BRANEN J R, HRDLICKA P J. Silica nanosprings coated with noble metal nanoparticles:Highly active SERS substrates[J]. J Phys Chem C, 2010, 115(2):453-459.
    [15]
    LUO G, FOUETIO KENGNE B A, MCILROY D N, MCDONALD A G. A novel nano fischer-tropsch catalyst for the production of hydrocarbons[J]. Environmental Progress Sustainable Energy, 2014, 33(3):693-698. doi: 10.1002/ep.v33.3
    [16]
    KENGNE B A F, ALAYAT A M, LUO G, MCDONALD A G, BROWN J, SMOTHERMAN H, MCLLROY D N. Preparation, surface characterization and performance of a Fischer-Tropsch catalyst of cobalt supported on silica nanosprings[J]. Appl Surface Sci, 2015, 359:508-514. doi: 10.1016/j.apsusc.2015.10.081
    [17]
    AHMADIPOUR M, HATAMI M, RAO K V. Preparation and characterization of nano-sized (Mg (x) Fe (1-x) O/SiO2)(x=0.1) core-shell nanoparticles by chemical precipitation method[J]. Adv Nanopart, 2012, 46(2):315-328.
    [18]
    HAO Q Q, ZHAO Y H, YANG H H, LIU Z T, LIU Z W. Alumina grafted to SBA-15 in supercritical CO2 as a support of cobalt for Fischer-Tropsch synthesis[J]. Energy Fuels, 2012, 26(11):6567-6575. doi: 10.1021/ef301447s
    [19]
    REPO E, WARCHOŁ J K, BHATNAGAR A, SILLANPÄÄ M. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials[J]. J Colloid Interface Sci, 2011, 358(1):261-267. doi: 10.1016/j.jcis.2011.02.059
    [20]
    BADOGA S. Synthesis and characterization of NiMo supported mesoporous materials with EDTA and phosphorus for hydrotreating of heavy gas oil[D]. Sakatchewan: University of Sakatchewan, 2015.
    [21]
    THYSSEN V V, MAIA T A, ASSAF E M. Cu and Ni catalysts supported on γ-Al2O3 and SiO2 assessed in glycerol steam reforming reaction[J]. J Brazilian Chem Soc, 2015, 26(1):22-31. https://www.researchgate.net/publication/222382412_Ethanol_steam_reforming_on_NiAl-SBA-15_catalysts_Effect_of_the_aluminium_content
    [22]
    PARK K, LIANG G, JI X, LUO Z P, LI C, CROFT M C, MARKERT J T. Structural and magnetic properties of gold and silica doubly coated γ-Fe2O3 nanoparticles[J]. J Phys Chem C, 2007, 111(50):18512-18519. doi: 10.1021/jp0757457
    [23]
    MERINO M C G, NASISI L D T, MONTOYA W M, AGUILERA J N U, DE RAPP M E F, LASCALEA G E, VÁZQUEZ P G. Combustion syntheses of Co3O4 powders using different fuels[J]. Procedia Mater Sci, 2015, 8:526-534. doi: 10.1016/j.mspro.2015.04.105
    [24]
    ZHENG J, CAI J, JIANG F, XU Y, LIU X. Investigation of the highly tunable selectivity to linearα-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment[J]. Catal Sci Technol, 2017, 7(20):4736-4755. doi: 10.1039/C7CY01764B
    [25]
    LI Y, DONG C, CHU J, QI J, LI X. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization:A facile three-in-one system for recognition and separation of endocrine disrupting chemicals[J]. Nanoscale, 2011, 3(1):280-287. doi: 10.1039/C0NR00614A
    [26]
    MUSIĆ S, FILIPOVIĆ-VINCEKOVIĆ N, SEKOVANIĆ L. Precipitation of amorphous SiO2 particles and their properties[J]. Brazilian J Chem Eng, 2011, 28(1):89-94. doi: 10.1590/S0104-66322011000100011
    [27]
    NABID M R, BIDE Y, ABUALI M. Copper core silver shell nanoparticle-yolk/shell Fe3O4@chitosan-derived carbon nanoparticle composite as an efficient catalyst for catalytic epoxidation in water[J]. RSC Adv, 2014, 4(68):35844-35851. doi: 10.1039/C4RA05283H
    [28]
    MOGHANIAN H, MOBINIKHALEDI A, BLACKMAN A, SAROUGH-FARAHANI E. Sulfanilic acid-functionalized silica-coated magnetite nanoparticles as an efficient, reusable and magnetically separable catalyst for the solvent-free synthesis of 1-amido-and 1-aminoalkyl-2-naphthols[J]. RSC Adv, 2014, 4(54):28176-28185. doi: 10.1039/C4RA03676J
    [29]
    RAFIEE H R, FEYZI M, JAFARI F, SAFARI B. Preparation and characterization of promoted Fe-V/SiO2 nanocatalysts for oxidation of alcohols[J]. J Chem, 2013.
    [30]
    XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun, 2011, 12(7):589-592. doi: 10.1016/j.catcom.2010.12.013
    [31]
    BADOGA S, DALAI A K, ADJAYE J, HU Y. Combined effects of EDTA and heteroatoms (Ti, Zr, and Al) on catalytic activity of SBA-15 supported NiMo catalyst for hydrotreating of heavy gas oil[J]. Ind Eng Chem Res, 2014, 53(6):2137-2156. doi: 10.1021/ie400695m
    [32]
    BAMBAL A S, GUGGILLA V S, KUGLER E L, GARDNER T H, DADYBURJOR D B. Poisoning of a silica-supported cobalt catalyst due to presence of sulfur impurities in syngas during Fischer-Tropsch synthesis:Effects of chelating agent[J]. Ind Eng Chem Res, 2014, 53(14):5846-5857. doi: 10.1021/ie500243h
    [33]
    FAN L, FUJIMOTO K. Fischer-Tropsch synthesis in supercritical fluid:Characteristics and application[J]. Appl Catal A:Gen, 1999, 186(1/2):343-354.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return