Volume 47 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
XIAO Ya-hui, LIU Yong, QIAO Cong-zhen, XU Shao-ping. Hydrogen-rich gas production from catalytic steam gasification of biomass in a decoupled dual loop gasification system[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1430-1439.
Citation: XIAO Ya-hui, LIU Yong, QIAO Cong-zhen, XU Shao-ping. Hydrogen-rich gas production from catalytic steam gasification of biomass in a decoupled dual loop gasification system[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1430-1439.

Hydrogen-rich gas production from catalytic steam gasification of biomass in a decoupled dual loop gasification system

Funds:

the National Natural Science Foundation of China 50776013

the National Natural Science Foundation of China 21676072

the Key Scientific Research Projects for Higher Education of Henan Province 20A530002

More Information
  • Corresponding author: XIAO Ya-hui, E-mail: yahuixiao1987@163.com
  • Received Date: 2019-09-09
  • Rev Recd Date: 2019-10-21
  • Available Online: 2021-01-23
  • Publish Date: 2019-12-10
  • In order to strengthen tar destruction and hydrogen-rich gas production in the biomass gasification, a novel decoupled dual loop gasification (DDLG) system was proposed. The system decouples gasification process into fuel gasification, tar reforming and residual char combustion, which occur in three independent reactors, i.e. gasifier, reformer and combustor. Both the gasifier and the reformer are separately interconnected with the combustor, forming two circulation loops in parallel. With pine sawdust as feedstock, and calcined olivine as both solid heat carriers and in-situ tar destruction catalyst, the performance of biomass gasification was investigated. The results indicate that the reforming after the gasifier and the presence of olivine catalyst greatly improve the tar destruction. Specifically, at the gasifier temperature of 700 ℃, the reformer temperature of 850 ℃ and the steam to carbon mass ratio (S/C) of 1.2, the tar content in product gas decreases to 13.9 g/m3, and the dry gas yield and H2 concentration reach 1.0 m3/kg, and 38.8%, respectively.
  • loading
  • [1]
    吴创之, 阴秀丽, 刘华财, 陈勇.生物质能分布式利用发展趋势分析[J].中国科学院院刊, 2016, (2):191-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201602006

    WU Chuang-zhi, YIN Xiu-li, LIU Hua-cai, CHEN Yong. Perspective on development of distributed bioenergy utilization[J]. Bull Chin Aca Sci, 2016, (2):191-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201602006
    [2]
    DOU B, ZHANG H, SONG Y, ZHAO L, JIANG B, HE M, RRAN C, CHEN H, XU Y. Hydrogen production from the thermochemical conversion of biomass:Issues and challenges[J]. Sustainable Energy Fuels, 2019, 3:314-342. doi: 10.1039/C8SE00535D
    [3]
    贾爽, 应浩, 孙云娟, 孙宁, 徐卫, 许玉, 宁思云.生物质水蒸气气化制取富氢合成气及其应用的研究进展[J].化工进展, 2018, 37(2):497-504. http://d.old.wanfangdata.com.cn/Periodical/hgjz201802011

    JIA Shuang, YING Hao, SUN Yun-juan, SUN Ning, XU Wei, XU Yu, NING Si-yun. Research advance in biomass steam gasification for hydrogen-rich syngas and its application[J]. Chem Ind Eng Prog, 2018, 37(2):497-504. http://d.old.wanfangdata.com.cn/Periodical/hgjz201802011
    [4]
    SANSANIWAL S K, PAL K, ROSEN M A, TYAGI S K. Recent advances in the development of biomass gasification technology:A comprehensive review[J]. Renewable Sustainable Energy Rev, 2017, 72:363-384. doi: 10.1016/j.rser.2017.01.038
    [5]
    MA X, ZHAO X, GU J, SHI J. Co-gasification of coal and biomass blends using dolomite and olivine as catalysts[J]. Renewable Energy, 2019, 132:509-514. doi: 10.1016/j.renene.2018.07.077
    [6]
    GUAN G, KAEWPANHA M, HAO X, ABUDULA A. Catalytic steam reforming of biomass tar:Prospects and challenges[J]. Renewable Sustainable Energy Rev, 2016, 58:450-461. doi: 10.1016/j.rser.2015.12.316
    [7]
    KIRNBAUER F, HOFBAUER H. Investigations on bed material changes in a dual fluidized bed steam gasification plant in Güssing, Austria[J]. Energy Fuels, 2011, 25:3793-3798. doi: 10.1021/ef200746c
    [8]
    NAQVI M, YAN J, DANISH M, FAROOQ U, LU S G. An experimental study on hydrogen enriched gas with reduced tar formation using pre-treated olivine in dual bed steam gasification of mixed biomass compost[J]. Int J Hydrogen Energy, 2016, 41(25):10608-10618. doi: 10.1016/j.ijhydene.2016.04.206
    [9]
    XIAO Y, XU S, TURSUN Y, WANG C, WANG G. Catalytic steam gasification of lignite for hydrogen-rich gas production in a decoupled triple bed reaction system[J]. Fuel, 2017, 189:57-65. doi: 10.1016/j.fuel.2016.10.078
    [10]
    肖亚辉.生物质和煤解耦催化气化制富氢气体工艺研究[D].大连: 大连理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10141-1018038212.htm

    XIAO Ya-hui. Decoupled catalytic gasification of biomass and coal for hydrogen-rich gas production[D]. Dalian: Dalian University of Technology, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10141-1018038212.htm
    [11]
    许光文, 董利, 刘新华, 汪印, 王宝群, 高士秋.解耦热化学转化: 方法、技术与研发现状[C]//中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会论文集.上海, 2008: 949-952. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKL200812002094.htm

    XU Guang-wen, DONG Li, LIU Xin-hua, WANG Yin, WANG Bao-qun, GAO Shi-qiu. Decoupling thermochemical conversion: Method, technique and research status[C]//Proceedings of 6th annual conference of China society of particuology cum symposium on particle technology across Taiwan straits. Shanghai, 2008: 949-952. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKL200812002094.htm
    [12]
    ZHANG J, WANG Y, DONG L, GAO S, XU G. Decoupling gasification:Approach principle and technology justification[J]. Energy Fuels, 2010, 24:6223-6232. doi: 10.1021/ef101036c
    [13]
    ZHANG J, WU R, ZHANG G, YU J, YAO C, WANG Y, GAO S, XU G. Technical review on thermochemical conversion based on decoupling for solid carbonaceous fuels[J]. Energy Fuels, 2013, 27(4):1951-1966. doi: 10.1021/ef400118b
    [14]
    LI C Z, XU G W. Decoupled thermochemical conversion-Preface[J]. Fuel, 2013, 112:607-608. doi: 10.1016/j.fuel.2013.06.027
    [15]
    王晓明, 肖显斌, 刘吉, 陈旭娇, 覃吴, 董长青, 李文艳.双流化床生物质气化炉研究进展[J].化工进展, 2015, 34(1):26-31. http://d.old.wanfangdata.com.cn/Periodical/hgjz201501007

    WANG Xiao-ming, XIAO Xian-bin, LIU Ji, CHEN Xu-jiao, QIN Wu, DONG Chang-qing, LI Wen-yan. Research progress of dual fluidized bed biomass gasifier[J]. Chem Ind Eng Prog, 2015, 34(1):26-31. http://d.old.wanfangdata.com.cn/Periodical/hgjz201501007
    [16]
    孙延林, 曾玺, 王芳, 崔彦斌, 许光文.低阶碎煤流化床两段气化中试试验[J].煤炭学报, 2017, 42(5):1297-1303. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201705028.htm

    SUN Yan-lin, ZENG Xi, WANG Fang, CUI Yan-bin, XU Guang-wen.Pilot test of low-rank crushed coal gasification in two-stage fluidized bed reactor[J]. J China Coal Soc, 2017, 42(5):1297-1303. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201705028.htm
    [17]
    曾骥敏, 肖睿, 衡丽君, 曾德望, 邵珊珊.生物质化学链气化制备高H2/CO物质的量比的合成气[J].燃烧科学与技术, 2016, 22(3):229-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201603007

    ZENG Ji-min, XIAO Rui, HENG Li-jun, ZENG De-wang, SHAO Shan-shan. Chemical looping gasification of biomass for high H2/CO-ratio syngas[J]. J Combust Sci Technol, 2016, 22(3):229-235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rskxyjs201603007
    [18]
    郭万军, 葛晖骏, 沈来宏, 宋涛, 顾海明, 蒋守席.基于铁矿石载氧体25kWth串行流化床生物质化学链气化实验研究[J].热科学与技术, 2017, 16(1):78-86. http://d.old.wanfangdata.com.cn/Periodical/rkxyjs201701013

    GUO Wan-jun, GE Hui-jun, SHEN Lai-hong, SONG Tao, GU Hai-ming, JIANG Shou-xi. Experimental study on chemical looping gasification of biomass with hematite base on 25 kWth fluidized beds[J]. J Therm Sci Technol, 2017, 16(1):78-86. http://d.old.wanfangdata.com.cn/Periodical/rkxyjs201701013
    [19]
    ZHANG Z, PANG S. Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100kW dual fluidised bed gasifier[J]. Renewable Energy, 2018, 132:416-424. http://cn.bing.com/academic/profile?id=8cc490a1616ae68d67813565729ab428&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    MAUERHOFER A M, FUCHS J, MÜLLER S, BENEDIKT F, SCHMID J C, HOFBAUER H. CO2 gasification in a dual fluidized bed reactor system:Impact on the product gas composition[J]. Fuel, 2019, 253:1605-1616. doi: 10.1016/j.fuel.2019.04.168
    [21]
    XIAO Y, XU S, SONG Y, WANG C, OUYANG S. Gasification of low-rank coal for hydrogen-rich gas production in a dual loop gasification system[J]. Fuel Process Technol, 2018, 171:110-116. doi: 10.1016/j.fuproc.2017.11.014
    [22]
    XIAO Y, XU S, SONG Y, SHAN Y, WANG C, WANG G. Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system[J]. Fuel Process Technol, 2017, 165:54-61. doi: 10.1016/j.fuproc.2017.05.013
    [23]
    DEVI L, PTASINSKI K J, JANSSEN F J J G. Pretreated olivine as tar removal catalyst for biomass gasifiers:Investigation using naphthalene as model biomass tar[J]. Fuel Process Technol, 2005, 86(6):707-730. doi: 10.1016/j.fuproc.2004.07.001
    [24]
    VIRGINIE M, ADÁNEZ J, COURSON C, DE DIEGO L F, GARCIA-LABIANO F, NIZNANSKY D, KIENNEMANN A, GAYÁN P, ABAD A. Effect of Fe-olivine on the tar content during biomass gasification in a dual fluidized bed[J]. Appl Catal B:Environ, 2012, 121/122:214-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d9a3deba33c98648062eee2f6917a7e
    [25]
    LANCEE R J, DUGULAN A I, THÜNE P C, VERINGA H J, NIEMANTSVERDRIET J W, FREDRIKSSON H O A. Chemical looping capabilities of olivine, used as a catalyst in indirect biomass gasification[J]. Appl Catal B:Environ, 2014, 145:216-222. doi: 10.1016/j.apcatb.2013.01.041
    [26]
    WOLFESBERGER U, AIGNER I, HOFBAUER H. Tar content and composition in producer gas of fluidized bed gasification of wood-Influence of temperature and pressure[J]. Environ Prog Sustainable Energy, 2009, 28:372-379. doi: 10.1002/ep.10387
    [27]
    DEVI L, PTASINSKI K J, JANSSEN F J J G, VAN PAASEN S V B, BERGMAN P C A, KIEL J H A. Catalytic decomposition of biomass tars:use of dolomite and untreated olivine[J]. Renewable Energy, 2005, 30(4):565-587. doi: 10.1016/j.renene.2004.07.014
    [28]
    ISRAELSSON M, THUNMAN H. Gasification reaction pathways of condensable hydrocarbons[J]. Energy Fuels, 2016, 30:4951-4959. doi: 10.1021/acs.energyfuels.6b00515
    [29]
    KOPPATZ S, PFEIFER C, HOFBAUER H. Comparison of the performance behaviour of silica sand and olivine in a dual fluidized bed reactor system for steam gasification of biomass at pilot plant scale[J]. Chem Eng J, 2011, 175:468-483. doi: 10.1016/j.cej.2011.09.071
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (212) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return