Volume 48 Issue 5
May  2020
Turn off MathJax
Article Contents
ZHUANG Xiu-zheng, SONG Yan-pei, YIN Xiu-li, WU Chuang-zhi. Formation mechanism of NOx precursor during organic waste pyrolysis coupled with hydrothermal pretreatment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 551-561.
Citation: ZHUANG Xiu-zheng, SONG Yan-pei, YIN Xiu-li, WU Chuang-zhi. Formation mechanism of NOx precursor during organic waste pyrolysis coupled with hydrothermal pretreatment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 551-561.

Formation mechanism of NOx precursor during organic waste pyrolysis coupled with hydrothermal pretreatment

Funds:

the National Natural Science Foundation of China 51676195

the Guangdong Natural Science Foundation 2017B030308002

the Science and Technology Program of Guangdong Province 2018A050506068

the Guangdong Foundation for Program of Science and Technology Research 2017B030314057

More Information
  • Corresponding author: YIN Xiu-li, E-mail:xlyin@ms.giec.ac.cn
  • Received Date: 2019-12-11
  • Rev Recd Date: 2020-03-23
  • Available Online: 2021-01-23
  • Publish Date: 2020-05-10
  • Taking the high moisture-containing sewage sludge (SS), herbal tea waste (HTW) and diatom (DT) as the feedstock, the characteristics of NOx precursors during pyrolysis with or without hydrothermal pretreatment in a horizontal tubular reactor were compared. The formation mechanism of NOx precursors in pyrolysis coupled with hydrothermal pretreatment was also investigated by means of TGA and XPS techniques. The results show that the hydrothermal pretreatment can affect the formation pathways related to NOx precursors at different pyrolysis stages and reduce the release amount of NOx precursor on the whole level. For example, when the pyrolysis temperature is 900 ℃, the NOx precursor yield derived from the hydrothermal treated coke is 55.0% for SS240, 48.1% for HTW240 and 51.2% for DT240, which is 9.5%, 6.0% and 15.4% less than that for SS, HTW and DT untreated sample, respectively. But if calculating based on the amount of N content in feedstock, the released NOx precursor from the hydrothermal treated coke is 90.1%, 41.9% and 59.8% less than that for SS, HTW and DT untreated sample, respectively. The inhibition effect on NH3 formation is higher than that on HCN formation. Meanwhile, two influencing pathways caused by hydrothermal pretreatment were further elaborated, i.e., the removal of N functionalities that leads to a decrease in NH3 on the primary reaction and the stabilization of N functionalities that leads to a decrease in HCN on the secondary reaction.
  • loading
  • [1]
    REN Q Q, ZHAO C S. Evolution of fuel-N in gas phase during biomass pyrolysis[J]. Renewable Sustainble Energy Rev, 2015, 50:408-418. doi: 10.1016/j.rser.2015.05.043
    [2]
    MLADENOVIĆ M, PAPRIKA M, MARINKOVIĆ A. Denitrification techniques for biomass combustion[J]. Renewable Sustainble Energy Rev, 2018, 82:3350-3364. doi: 10.1016/j.rser.2017.10.054
    [3]
    LI J J, YANG H R, WU Y X, LV J F, YUE G X. Effects of the updated national emission regulation in china on circulating fluidized bed boilers and the solutions to meet them[J]. Environ Sci Technol, 2013, 47(12):6681-6687. doi: 10.1021/es4001888
    [4]
    ZHAN Z, ZHUANG X Z, SONG Y P, CHANG G Z, WANG Z K, YIN X L, WANG X M, WU C Z. Formation and regulatory mechanisms of N-containing gaseous pollutants during stage-pyrolysis of agricultural biowastes[J]. J Clean Prod, 2019, 236:117706. doi: 10.1016/j.jclepro.2019.117706
    [5]
    詹昊, 张晓鸿, 阴秀丽, 吴创之.生物质热化学转化过程含N污染物形成研究[J].化学进展, 2016, 28(12):1880-1890. doi: 10.7536/PC160438

    ZHAO Hao, ZHANG Xiao-hong, YIN Xiu-li, WU Chuang-zhi. Formation of nitrogenous pollutants during biomass thermo-chemical conversion[J]. Prog Chem, 2016, 28(12):1880-1890. doi: 10.7536/PC160438
    [6]
    CHEN H F, NAMIOKA T, YOSHIKAWA K. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Appl Energy, 2011, 88(12):5032-5041. doi: 10.1016/j.apenergy.2011.07.007
    [7]
    LIU T T, GUO Y C, PENG N N, LANG Q Q, XIA Y, GAI C, LIU Z G. Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar[J]. J Anal Appl Pyrolsis, 2017, 126:298-306. doi: 10.1016/j.jaap.2017.05.017
    [8]
    FENG Y H, YU T C, CHEN D Z, XU G L, WAN L, ZHANG Q, HU Y Y. Effect of hydrothermal treatment on the steam gasification behavior of sewage sludge:Reactivity and nitrogen emission[J]. Energy Fuels, 2018, 32(1):581-587. doi: 10.1021/acs.energyfuels.7b03304
    [9]
    ZHAN H, ZHUANG X Z, SONG Y P, HUANG Y Q, LIU H C, YIN X L, WU C Z. Evolution of nitrogen functionalities in relation to NOx precursors during low-temperature pyrolysis of biowastes[J]. Fuel, 2018, 218:325-334. doi: 10.1016/j.fuel.2018.01.049
    [10]
    CHEN H F, ZHAO P T, WANG Y, XU G W, KUNIO Y. NO Emission control during the decoupling combustion of industrial biomass wastes with a high nitrogen content[J]. Energy Fuels, 2013, 27(6):3186-3193. doi: 10.1021/ef301994q
    [11]
    ZHAN H, ZHUANG X Z, SONG Y P, YIN X L, CAO J J, SHEN Z X, WU C Z. Step pyrolysis of N-rich industrial biowastes:Regulatory mechanism of NOx precursor formation via exploring decisive reaction pathways[J]. Chem Eng J, 2018, 344:320-331. doi: 10.1016/j.cej.2018.03.099
    [12]
    庄修政, 黄艳琴, 阴秀丽, 吴创之.污泥水热处理制备清洁燃料的研究进展[J].化工进展, 2018, 37(1):311-318. http://d.old.wanfangdata.com.cn/Periodical/hgjz201801040

    ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Research on clean solid fuel derived from sludge employing hydrothermal treatment[J]. Chem Ind Eng Prog, 2018, 37(1):311-318. http://d.old.wanfangdata.com.cn/Periodical/hgjz201801040
    [13]
    ZHAO P T, CHEN H F, GE S F, YOSHIKAWA K. Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion[J]. Appl Energy, 2013, 111:199-205. doi: 10.1016/j.apenergy.2013.05.029
    [14]
    MA D C, ZHANG G Y, AREEPRASERT C, LINA G, YOSHIKAWA K. NO emission characteristics of hydrothermally pretreated antibiotic mycelial dreg combustionin a drop tube reactor[J]. Energy Procedia, 2014, 61:743-746. doi: 10.1016/j.egypro.2014.11.956
    [15]
    MA D C, ZHANG G Y, AREEPRASERT C, LI C X, SHEN Y F, YOSHIKAWA K, XU G W. Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue[J]. Chem Eng J, 2016, 284:708-715. doi: 10.1016/j.cej.2015.08.149
    [16]
    LIU Z, QUEK A, PARSHETTI G, JAIN A, SRINIVASAN M P, HOEKMAN S K, BALASUBRAMANIAN R. A study of nitrogen conversion and polycyclic aromatic hydrocarbon (PAH) emissions during hydrochar-lignite co-pyrolysis[J]. Appl Energy, 2013, 108:74-81. doi: 10.1016/j.apenergy.2013.03.012
    [17]
    ZHAN H, ZHUANG X Z, SONG Y P, YIN X L, WU C Z. Insights into the evolution of fuel-N to NOx precursors during pyrolysis of N-rich nonlignocellulosic biomass[J]. Appl Energy, 2018, 219:20-33. doi: 10.1016/j.apenergy.2018.03.015
    [18]
    詹昊, 阴秀丽, 黄艳琴, 张晓鸿, 袁洪友, 谢建军, 吴创之.药渣热解过程NOx前驱物生成特征及规律研究[J].燃料化学学报, 2017, 45(3):279-288. doi: 10.3969/j.issn.0253-2409.2017.03.004

    ZHAN Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun, WU Chuang-zhi. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. J Fuel Chem Technol, 2017, 45(3):279-288. doi: 10.3969/j.issn.0253-2409.2017.03.004
    [19]
    詹昊, 林均衡, 黄艳琴, 阴秀丽, 刘华财, 袁洪友, 吴创之.抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究[J].燃料化学学报, 2017, 45(10):1219-1229. doi: 10.3969/j.issn.0253-2409.2017.10.009

    ZHAN Hao, LIN Jun-heng, HUANG Yan-qin, YIN Xiu-li, LIU Hua-cai, YUAN Hong-you, WU Chuang-zhi. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J]. J Fuel Chem Technol, 2017, 45(10):1219-1229. doi: 10.3969/j.issn.0253-2409.2017.10.009
    [20]
    庄修政, 詹昊, 黄艳琴, 宋艳培, 阴秀丽, 吴创之.两类药渣的水热提质效果及其燃烧特性研究[J].燃料化学学报, 2018, 46(8):940-949. doi: 10.3969/j.issn.0253-2409.2018.08.006

    ZHUANG Xiu-zheng, ZHAN Hao, HUANG Yan-qin, SONG Yan-pei, YIN Xiu-li, WU Chuang-zhi. Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes[J]. J Fuel Chem Technol, 2018, 46(8):940-949. doi: 10.3969/j.issn.0253-2409.2018.08.006
    [21]
    张光义, 马大朝, 彭翠娜, 许光文.水热处理抗生素菌渣制备固体生物燃料[J].化工学报, 2013, 64(10):3741-3749. http://d.old.wanfangdata.com.cn/Periodical/hgxb201310035

    ZHANG Guang-yi, MA Da-zhao, PENG Cui-na, XU Guang-wen. Hydrothermal treatment of antibiotic mecelial dregs for solid bio-fuel preperation[J]. Chem Ind Eng Prog, 2013, 64(10):3741-3749. http://d.old.wanfangdata.com.cn/Periodical/hgxb201310035
    [22]
    ZHUANG X Z, HUANG Y Q, SONG Y P, ZHAN H, YIN X L, WU C Z. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresour Technol, 2017, 245:463-470. doi: 10.1016/j.biortech.2017.08.195
    [23]
    ZHUANG X Z, ZHAN H, SONG Y P, HE C, HUANG Y Q, YIN X L, WU C Z. Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC)[J]. Fuel, 2019, 236:960-974. doi: 10.1016/j.fuel.2018.09.019
    [24]
    MA D C, ZHANG G Y, ZHAO P T, AREEPRASERT C, SHEN Y F, YOSHIKAWA K, XU G W. Hydrothermal treatment of antibiotic mycelial dreg:More understanding from fuel characteristics[J]. Chem Eng J, 2015, 273:147-155. doi: 10.1016/j.cej.2015.01.041
    [25]
    WU K, GAO Y, ZHU G K, ZHU J J, YUAN Q X, CHEN Y Q, CAI M Z, FENG L. Characterization of dairy manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different temperatures[J]. J Anal Appl Pyrolysis, 2017, 127:335-342. doi: 10.1016/j.jaap.2017.07.017
    [26]
    YAO Z L, MA X Q. A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis[J]. Energy, 2017, 141:1156-1165. doi: 10.1016/j.energy.2017.10.008
    [27]
    TIAN K, LIU W J, QIAN T T, JIANG H, YU H Q. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environ Sci Technol, 2014, 48(18):10888-10896. doi: 10.1021/es5022137
    [28]
    LI J, WANG Z Y, YANG X, HU L, LIU Y W, WANG C X. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG-FTIR[J]. J Anal Appl Pyrolysis, 2007, 80(1):247-253. doi: 10.1016/j.jaap.2007.03.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (226) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return