Volume 47 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
ZHOU Zhi-hui, JIN Can, ZHANG Hao-yi, LIANG Xiao-lei, ZHANG Fu-min, XIAO Qiang. CO2 adsorption and separation on phloroglucinol-melamine -formaldehyde polymeric nanofibers[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 242-248.
Citation: ZHOU Zhi-hui, JIN Can, ZHANG Hao-yi, LIANG Xiao-lei, ZHANG Fu-min, XIAO Qiang. CO2 adsorption and separation on phloroglucinol-melamine -formaldehyde polymeric nanofibers[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 242-248.

CO2 adsorption and separation on phloroglucinol-melamine -formaldehyde polymeric nanofibers

Funds:

the National Natural Science Foundation of China 21471131

College Students Technology Innovation Plan of Zhejiang Province(XinMiao Talent Plan) 2017R404017

More Information
  • Corresponding author: XIAO Qiang, E-mail: xiaoq@zjnu.cn
  • Received Date: 2018-09-18
  • Rev Recd Date: 2018-11-28
  • Available Online: 2021-01-23
  • Publish Date: 2019-02-10
  • Phloroglucinol-melamine-formaldehyde polymeric nanofibers (PMF) were hydrothermally synthesized by a polycondensation method using melamine, phloroglucinol and formaldehyde as starting materials. The effect of temperature on the PMF synthesis was investigated. The morphology and structure of the as-synthesized PMF were characterized by the scanning electron microscope (SEM), transmission electron microscope (TEM), N2 adsorption-desorption and Fourier-transform infrared spectrometer (FT-IR) etc. Pure gas adsorption equilibrium isotherms of CO2 and N2 were determined by the volumetric method. The PMF sample synthesized at 393 K presented a higher specific surface area (64 m2/g) and a higher adsorption capacity of CO2 (1.83 mmol/g@118 kPa, 298 K). Breakthrough column experiments indicated that efficient separation of CO2-N2 mixtures could be achieved on the PMF at 298 K and various pressures ranging from 200 to 600 kPa. After the PMF was thermally treated at 873 K in various atmospheres such as N2, H2, water vapor, etc., it was found that the specific surface area and micropore volume were greatly increased. Among the posttreated PMF samples, the one treated in 15% H2O stream showed an improved CO2 adsorption amount up to 2.83 mmol/g at 298 K and 118 kPa.
  • loading
  • [1]
    SONG C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catal Today, 2006, 115(1):2-32. doi: 10.1016-j.cattod.2006.02.029/
    [2]
    黄雪芹, 肖强, 钟依均, 朱伟东.湿磨法制备纳米Li4SiO4材料用于高温捕集CO2[J].燃料化学学报, 2016, 44(9):1119-1124. doi: 10.3969/j.issn.0253-2409.2016.09.013

    HUANG Xue-qin, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. A wet ball-milling method to nanocrystalline Li4SiO4 materials for CO2 capture at high temperatures[J]. J Fuel Chem Technol, 2016, 44(9):1119-1124. doi: 10.3969/j.issn.0253-2409.2016.09.013
    [3]
    高峰, 李存梅, 王媛, 孙国华, 李开喜.树脂基球状活性炭的制备及对二氧化碳吸附性能的研究[J].燃料化学学报, 2014, 42(1):116-120. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18343.shtml

    GAO Feng, LI Cun-mei, WANG Yuan, SUN Guo-hua, LI Kai-xi. Preparation of resin-base spherical activated carbon and study on adsorption properties towards CO2 [J]. J Fuel Chem Technol, 2014, 42(1):116-120. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18343.shtml
    [4]
    MA T Y, LIU L, YUAN Z Y. Direct synthesis of ordered mesoporous carbons[J]. Chem Soc Rev, 2013, 42(9):3977-4003. doi: 10.1039/C2CS35301F
    [5]
    BAE Y S, SNURR R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew Chem Int Ed, 2011, 50(49):11586-11596. doi: 10.1002/anie.201101891
    [6]
    HARLICK P J E, TEZEL F H. An experimental adsorbent screening study for CO2 removal from N2[J]. Microporous Mesoporous Mater, 2004, 76(1/3):71-79. doi: 10.1016-j.micromeso.2004.07.035/
    [7]
    HE Y F, SEATON N A. Heats of adsorption and adsorption heterogeneity for methane, ethane, and carbon dioxide in MCM-41[J]. Langmuir, 2006, 22(3):1150-1155. doi: 10.1021/la052237k
    [8]
    陈琳琳, 王霞, 郭庆杰.四乙烯五胺修饰介孔硅胶吸附CO2性能的研究[J].燃料化学学报, 2015, 43(1):108-115. doi: 10.3969/j.issn.0253-2409.2015.01.017

    CHEN Lin-lin, WANG Xia, GUO Qing-jie. Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel[J]. J Fuel Chem Technol, 2015, 43(1):108-115. doi: 10.3969/j.issn.0253-2409.2015.01.017
    [9]
    WANG D, MA X, SENTORUNSHALABY C, SONG C S. Development of carbon-based "molecular basket" sorbent for CO2 capture[J]. Ind Eng Chem Res, 2012, 51(7):3048-3057. doi: 10.1021/ie2022543
    [10]
    赵会玲, 胡军, 汪建军, 周丽绘, 刘洪来.介孔材料氨基表面修饰及其对CO2的吸附性能[J].物理化学学报, 2007, 23(6):801-806. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb200706002

    ZHAO Hui-ling, HU Jun, WANG Jian-jun, ZHOU Li-hui, LIU Hong-lai. CO2 capture by the amine-modified mesoporous materials[J]. Acta Phys-Chim Sin, 2007, 23(6):801-806. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb200706002
    [11]
    郝仕油, 肖强, 钟依均, 朱伟东, 杨辉.氨基功能化SBA-15的直接合成及其对CO2的吸附性能研究[J].无机化学学报, 2010, 26(6):982-988. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201006009

    HAO Shi-you, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong, YANG Hui. One-pot synthesis of amino-functionalized SBA-15 and their CO2 adsorption properties[J]. Chin J Inorg Chem, 2010, 26(6):982-988. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201006009
    [12]
    HERM Z R, SWISHER J A, SMIT B, KRISHNA R, LONG J R. Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture[J]. J Am Chem Soc, 2011, 133(15):5664-5667. doi: 10.1021/ja111411q
    [13]
    LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1477-1504. doi: 10.1039/b802426j
    [14]
    MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J Am Chem Soc, 2005, 127(51):17998-17999. doi: 10.1021/ja0570032
    [15]
    DING S Y, WANG W. Covalent organic frameworks (COFs):from design to applications[J]. Chem Soc Rev, 2013, 42(2):548-568. doi: 10.1039/C2CS35072F
    [16]
    XIANG Z H, CAO D P. Porous covalent-organic materials:Synthesis, clean energy application and design[J]. J Mater Chem A, 2013, 1(8):2691-2718. doi: 10.1039/C2TA00063F
    [17]
    BEN T, PEI C Y, ZHANG D L, XU J, DENG F, JING X F, QIU S L. Gas storage in porous aromatic frameworks(PAFs)[J]. Energy Environ Sci, 2011, 4(10):3991-3999. doi: 10.1039/c1ee01222c
    [18]
    PEI C Y, BEN T, GUO H, XU J, DENG F, XIANG Z H, CAO D P, QIU S L. Targeted synthesis of electroactive porous organic frameworks containing triphenyl phosphine moieties[J]. Phil Trans R Soc A, 2013, 371(2000):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a0e6a2863e7c3ce08a4113996d84f62
    [19]
    LIU L, LI P Z, ZHU L L, ZOU R Q, ZHAO Y L. Microporous polymelamine network for highly selective CO2 adsorption[J]. Polymer, 2013, 54(2):596-600. doi: 10.1016/j.polymer.2012.12.015
    [20]
    XU C, HEDIN N. Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption[J]. J Mater Chem A, 2013, 1(10):3406-3414. doi: 10.1039/c3ta01160g
    [21]
    SCHWAB M G, FASSBENDER B, SPIESS H W, THOMAS A, FENG X, MULLEN K. Catalyst-free preparation of melamine-based microporous polymer networks through schiff base chemistry[J]. J Am Chem Soc, 2009, 131(21):7216-7217. doi: 10.1021/ja902116f
    [22]
    HU J X, SHANG H, WANG J G, LUO L, XIAO Q, ZHONG Y J, ZHU W D. Highly enhanced selectivity and easy regeneration for the separation of CO2 over N2 on melamine-based microporous organic polymers[J]. Ind Eng Chem Res, 2014, 53(29):11828-11837. doi: 10.1021/ie501736t
    [23]
    胡敬秀, 张静, 邹建锋, 肖强, 钟依均, 朱伟东.源自密胺基多孔聚合物的富氮微孔炭及选择性吸附CO2[J].物理化学学报, 2014, 30(6):1169-1174. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201406020

    HU Jing-xiu, ZHANG Jing, ZOU Jian-feng, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. Nitrogen-rich microporous carbon derived from melamine-based porous polymer for selective CO2 adsorption[J]. Acta Phys-Chim Sin, 2014, 30(6):1169-1174. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201406020
    [24]
    ZHOU H H, XU S, SU H P, WANG M, QIAO W M, LING L C, LONG D H. Facile preparation and ultra-microporous structure of melamine-resorcinol-formaldehyde polymeric microspheres[J]. Chem Commun, 2013, 49(36):3763-3765. doi: 10.1039/c3cc41109e
    [25]
    WANG M, WANG J, QIAO W M, LING L C, LONG D H. Scalable preparation of nitrogen-enriched carbon microspheres for efficient CO2 capture[J]. RSC Adv, 2014, 4(106):61456-61464. doi: 10.1039/C4RA11647J
    [26]
    XIAO Q, WEN J J, GUO Y N, HU J X, WANG J G, ZHANG F M, TU G M, ZHONG Y J, ZHU W D. Synthesis, carbonization, and CO2 adsorption properties of phloroglucinol-melamine-formaldehyde polymeric nanofibers[J]. Ind Eng Chem Res, 2016, 55(49):12667-12674. doi: 10.1021/acs.iecr.6b03494
    [27]
    PERALTA D, CHAPLAIS G, SIMON-MASSERON A, BARTHELET K, CHIZALLET C, QUOINEAUD A A, PIRNGRUBER G D. Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations[J]. J Am Chem Soc, 2012, 134(19):8115-8126. doi: 10.1021/ja211864w
    [28]
    STRELKO V V, KUTS V S, THROWER P A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions[J]. Carbon, 2000, 38(10):1499-1503. doi: 10.1016/S0008-6223(00)00121-4
    [29]
    LIU L, DENG Q F, HOU X X, YUAN Z Y. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. J Mater Chem, 2012, 22(31):15540-15548. doi: 10.1039/c2jm31441j
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (145) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return