Volume 48 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
CHENG Dan-yan, YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 18-27.
Citation: CHENG Dan-yan, YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 18-27.

Carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass

Funds:

National Natural Science Foundation of China 41672148

More Information
  • Corresponding author: ZHANG Jun-ying, Tel: 18971412881, E-mail: jyzhang@hust.edu.cn
  • Received Date: 2019-08-12
  • Rev Recd Date: 2019-11-20
  • Available Online: 2021-01-23
  • Publish Date: 2020-01-10
  • The carbothermal interaction between Cu-based oxygen carrier and ash minerals in the chemical-looping gasification of coal and biomass were investigated experimentally by considering three factors of reaction temperature, type of ash and ash content. The chemical-looping gasification was simulated by reciprocally switching the redox atmosphere of the fixed bed and the products were characterized by XRD and SEM-EDS and analyzed by thermodynamic calculation. The results show that Fe2O3 and Al2O3 in the coal ash can easily react with CuO/Cu2O, forming complexes such as CuAl2O4, Cu2Fe2O4 and CuFe2O4, which are difficult to reduce. However, CaO can alleviate the sintering of Cu-based oxygen carriers by hindering the formation of Cu-Al and Cu-Si complexes. The increase of reaction temperature promotes the solid-solid reaction of CuO with silicate minerals such as CaSiO3 and MgSiO3, producing CaCuSi2O6 and CuMgSi2O6 and reducing the reactivity of Cu-based oxygen carriers. With the increase of ash content, Ca2Fe9O13 generated from Ca2+ and Fe3+ can react with SiO2, forming three-phase eutectic CaFeSi2O6 with a high-melting point, which co-fuses with Cu-based oxygen carrier and covers the surface of the oxygen carrier, leading to a decrease in the oxygen release performance.
  • loading
  • [1]
    STOCKER T F, QIN D H, PLATTNER G K, TIGNOR M M B, ALLEN S K, BOSCHUNG J, NAUELS A, XIA Y, BEX V, MIDGLEY P M. Climate Change 2013(IPCC):The Physical Science Basis[M]. Cambridge:Cambridge University Press, 2013.
    [2]
    ADÁNEZ J, ABAD A, GARCÍA-LABIANO F, GAYÁN P, DE DIEGO L F. Progress in combustion and reforming technologies[J]. Prog Energy Combust Sci, 2012, 38:215-282. doi: 10.1016/j.pecs.2011.09.001
    [3]
    ADÁNEZ J, ABAD A, MENDIARA T, GAYÁN P, DE DIEGO L F, GARCÍA-LABIANO F. Chemical looping combustion of solid fuels[J]. Prog Energy Combust Sci, 2018, 65:6-66. doi: 10.1016/j.pecs.2017.07.005
    [4]
    GUO Q J, CHENG Y, LIU Y Z, JIA W H, RYU H J. Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier[J]. Ind Eng Chem Res, 2014, 53(1):78-86. doi: 10.1021/ie401568x
    [5]
    HE F, GALINSKY N, LI F X. Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles-Feasibility assessment and process simulations[J]. Int J Hydrogen Energy, 2013, 38(19):7839-7854. doi: 10.1016/j.ijhydene.2013.04.054
    [6]
    王旭锋, 刘晶, 刘丰.基于CoFe2O4载氧体的生物质化学链气化热力学分析及实验研究[J].燃料化学学报, 2019, 47(3):306-311. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903007

    WANG Xu-feng, LIU Jing, LIU Feng. Thermodynamic analysis and experimental studies on chemical looping gasification of biomass with CoFe2O4 as oxygen carrier[J]. J Fuel Chem Technol, 2019, 47(3):306-311. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201903007
    [7]
    GAYÁN P, ADÁNEZ-RUBIO I, ABAD A, DE DIEGO L F, GARCÍA-LABIANO F, ADÁNEZ J. Development of Cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU) process[J]. Fuel, 2012, 96:226-238. doi: 10.1016/j.fuel.2012.01.021
    [8]
    CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83:1215-1225. doi: 10.1016/j.fuel.2003.11.013
    [9]
    FORUTAN H R, KARIMI E, HAFIZI A, RAHIMPOUR M R, KESHAVARZ P. Expert representation chemical looping reforming:A comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al2O3[J]. J Ind Eng Chem, 2015, 21:900-911. doi: 10.1016/j.jiec.2014.04.031
    [10]
    ABAD A, ADÁNEZ J, GARCÍA-LABIANO F, DE DIEGO L F, GAYÁN P, CELAYA J. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion[J]. Chem Eng Sci, 2007, 62(1/2):533-549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b86ad0cb264808b4248ca2d05ecac758
    [11]
    ZENG J M, XIAO R, ZHANG S, ZHANG H Y, ZENG D W, QIU Y, MA Z. Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor[J]. Appl Energy, 2018, 229:404-412. doi: 10.1016/j.apenergy.2018.08.025
    [12]
    SAHA C, BHATTACHARYA S. Chemical looping combustion of low-ash and high-ash low rank coals using different metal oxides-A thermogravimetric analyser study[J]. Fuel, 2012, 97:137-150. doi: 10.1016/j.fuel.2012.02.012
    [13]
    BAO J H, LI Z S, CAI N S. Interaction between iron-based oxygen carrier and four coal ashes during chemical looping combustion[J]. Appl Energy, 2014, 115:549-558. doi: 10.1016/j.apenergy.2013.10.051
    [14]
    GU H M, SHEN L H, ZHONG Z P, ZHOU Y F, LIU W D, NIU X, GE H J, JIANG S X, WANG L L. Interaction between biomass ash and iron ore oxygen carrier during chemical looping combustion[J]. Chem Eng J, 2015, 277:70-78. doi: 10.1016/j.cej.2015.04.105
    [15]
    ILYUSHECHKIN A Y, KOCHANEK M, LIM S. Interactions between oxygen carriers used for chemical looping combustion and ash from brown coals[J]. Fuel Process Technol, 2015, 147:71-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f044922d9a31c23e4b492da93180ded3
    [16]
    DAI J Z, WHITTY K. Effects of coal ash on CuO as an oxygen carrier for chemical looping with oxygen uncoupling[J]. Energy Fuels, 2018, 32(11):11656-11665. doi: 10.1021/acs.energyfuels.8b02521
    [17]
    KELLER M, ARJMAND M, LEION H, MATTISSON T. Interaction of mineral matter of coal with oxygen carriers in chemical-looping combustion (CLC)[J]. Chem Eng Res Des, 2014, 92(9):1753-1770. doi: 10.1016/j.cherd.2013.12.006
    [18]
    SAHA C, ZHANG S, HEIN K, XIAO R, BHATTACHARYA S. Chemical looping combustion (CLC) of two Victorian brown coals-Part 1:Assessment of interaction between CuO and minerals inherent in coals during single cycle experiment[J]. Fuel, 2013, 104:262-274. doi: 10.1016/j.fuel.2012.08.009
    [19]
    SAHA C, ZHANG S, XIAO R, BHATTACHARYA S. Chemical Looping Combustion (CLC) of two Victorian brown coals-Part 2:Assessment of interaction between CuO and minerals inherent in coals during multi cycle experiments[J]. Fuel, 2012, 96:335-347. doi: 10.1016/j.fuel.2012.01.048
    [20]
    JIANG S, SHEN L, WU J, YAN J, SONG T. The investigations of hematite-CuO oxygen carrier in chemical looping combustion[J].Chem Eng J, 2017, 317:132-42. doi: 10.1016/j.cej.2017.01.091
    [21]
    JACOB K T, ALCOCK C B. Thermodynamics of CuA1O2 and CuA12O4 and phase equilibria in the system Cu2O-CuO-Al2O3[J]. J Am Ceram Soc, 1974, 58(5/6):192-195.
    [22]
    MROVĚC M, LEITNEŘ J, NEVRIVA M, SEDMIDUBSKY D, STEJSKAL J. Thermochemical properties of MeCuO2 and Me2CuO3 (Me=Ca, Sr, Ba) mixed oxides[J]. Thermochim Acta, 1998, 318(1/2):63-70. https://www.sciencedirect.com/science/article/abs/pii/S004060319800330X
    [23]
    叶大伦, 胡建华.实用无机物热力学数据手册[M].二版.北京: 冶金工业出版社, 2002.

    YE Da-lun, HU Jian-hua. Handbook of Thermodynamic Data of Inorganic[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002.
    [24]
    ZHAO Y C, ZHANG J Y, TIAN C, LI H, SHAO X, ZHENG C. Mineralogy and chemical composition of high-calcium fly ashes and density fractions from a coal-fired power plant in china[J]. Energy Fuels, 2010, 16(4):907-16.
    [25]
    SAN PIO M A, GALLUCCI F, ROGHAIR I, VAN SINT ANNALAND M. On the mechanism controlling the redox kinetics of Cu-based oxygen carriers[J]. Chem Eng Res Des, 2017, 124:193-201. doi: 10.1016/j.cherd.2017.06.019
    [26]
    DAI J Z, WHITTY K J. Predicting and alleviating coal ash-induced deactivation of CuO as an oxygen carrier for chemical looping with oxygen uncoupling[J]. Fuel, 2019, 241:1214-1222. doi: 10.1016/j.fuel.2019.02.029
    [27]
    DEAN J A. Lange's Handbook of Chemistry[M]. New York:McGraw-Hill, 1999.
    [28]
    NIU Y Q, TAN H Z, HUI S E. Ash-related issues during biomass combustion:Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energy Combust Sci, 2016, 52:1-61. doi: 10.1016/j.pecs.2015.09.003
    [29]
    雍其润, 龚本根, 赵永椿, 张军营.高硅煤中Si-Al-Fe-Ca四元体系碳热反应研究[J].燃料化学学报, 2017, 45(11):1296-1302. doi: 10.3969/j.issn.0253-2409.2017.11.003

    YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. J Fuel Chem Technol, 2017, 45(11):1296-1302. doi: 10.3969/j.issn.0253-2409.2017.11.003
    [30]
    YAN J C, GE H J, JIANG S X, GU H M, SONG T, GUO Q J, SHEN L H. Effect of sodium removal on chemical looping combustion of high-sodium coal with hematite as an oxygen carrier[J]. Energy Fuels, 2019, 33(3):2153-2165. doi: 10.1021/acs.energyfuels.9b00044
    [31]
    NAMKUNG H, HU X F, KIM H T, WANG F C, YU G S. Evaluation of sintering behavior of ash particles from coal and rice straw using optical heating stage microscope at high temperature fouling conditions[J]. Fuel Process Technol, 2016, 149:195-208. doi: 10.1016/j.fuproc.2016.04.020
    [32]
    SCALA F, CHIRONE R. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels[J]. Biomass Bioenergy, 2008, 32(3):252-266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2edd64ccfeb9aabbab5b9554c999c48
    [33]
    CHIRONE R, MICCIO F, SCALA F. Mechanism and prediction of bed agglomeration during fluidized bed combustion of a biomass fuel:Effect of the reactor scale[J]. Chem Eng J, 2006, 123(3):71-80. doi: 10.1016/j.cej.2006.07.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (184) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return