Volume 47 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
ZHENG Hua-yan, ZHANG Min, FU Hua, ZHANG Hua-cheng, LI Zhong. CO hydrogenation to ethanol over copper-nickel bimetallic catalyst prepared by isomorphous substitution method[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 84-91.
Citation: ZHENG Hua-yan, ZHANG Min, FU Hua, ZHANG Hua-cheng, LI Zhong. CO hydrogenation to ethanol over copper-nickel bimetallic catalyst prepared by isomorphous substitution method[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 84-91.

CO hydrogenation to ethanol over copper-nickel bimetallic catalyst prepared by isomorphous substitution method

Funds:

the National Natural Science Foundation of China 21576179

the National Natural Science Foundation of China U1510203

  • Received Date: 2018-09-18
  • Rev Recd Date: 2018-11-15
  • Available Online: 2021-01-23
  • Publish Date: 2019-01-10
  • A series of Cu-Ni bimetallic catalysts derived from nickel-malachite were prepared by an oriented isomorphous substitution method. The effects of the precursor structure and catalysts surface composition on the catalytic performance CO hydrogenation to ethanol were investigated in an agitated slurry autoclave reactor. The studies demonstrated that the pure (Cu, Ni)2CO3(OH)2 phase was obtained by oriented isomorphous substitution method and Ni2+ was rich on the (Cu, Ni)2CO3(OH)2 precursor surface. Uniform distribution of (Cux, Ni1-x)O solid solution were found in CuO crystal lattice. After calcination, the (Cux, Ni1-x)O solid solution dispersed in the crystal structure of CuO uniformly. Cu and Ni dispersed in the catalysts evenly to form an active interface after reduction, which promoted the synthesis of higher alcohols. Discontinuously distributed Ni-active sites prevented the carbon chain from growing further, and enhanced the selectivity of ethanol. The catalyst prepared by the feeding materials with Ni/Cu molar ratio=45:100 was found to exhibit higher activity and ethanol selectivity due to the strong interaction between (Cux, Ni1-x)O solid solution and CuO phase.
  • loading
  • [1]
    AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018, 8(8):7025-7050. doi: 10.1021/acscatal.8b01391
    [2]
    LUK H T, MONDELLI C, FERRE D C, STEWART J A, PEREZ-RAMIREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017, 46(5):1358-1426. doi: 10.1039/C6CS00324A
    [3]
    WANG L F, CAO A, LIU G L, ZHANG L H, LIU Y. Bimetallic CuCo nanoparticles derived from hydrotalcite supported on carbon fibers for higher alcohols synthesis from syngas[J]. Appl Sur Sci, 2016, 360:77-85. doi: 10.1016/j.apsusc.2015.10.234
    [4]
    XU X D, DOESBURG E B M, SCHOLTEN J J F. Synthesis of higher alcohols from syngas-recently patented catalysts and tentative ideas on the mechanism[J]. Catal Today, 1987, 2(1):125-170. http://cn.bing.com/academic/profile?id=92e8d545efc1881626c51133df0a3949&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    SU J J, MAO W, XU X C, YANG Z, LI H L, XU J, HAN Y F. Kinetic study of higher alcohol synthesis directly from syngas over CoCu/SiO2 catalysts[J]. AIChE J, 2014, 60(5):1797-1809. doi: 10.1002/aic.v60.5
    [6]
    WANG P, CHEN S Y, BAI Y X, GAO X F, LI X L, SUN K, XIE H J, YANG G H, HAN Y Z, TAN Y S. Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation[J]. Fuel, 2017, 195:69-81. doi: 10.1016/j.fuel.2017.01.050
    [7]
    XU R, YANG C, WEI W, LI W H, SUN Y H, HU T D. Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas[J]. J Mol Catal A:Chem, 2004, 221:51-58. doi: 10.1016/j.molcata.2004.07.003
    [8]
    ZHAO N, XU R, WEI W, SUN Y H. CuMnZrO2 catalyst for alcohol synthesis by fischertropsch modified element[J]. React Kinet Catal Lett, 2002, 75(2):297-304. doi: 10.1023/A:1015203113811
    [9]
    XIAO K, QI X Z, BAO Z H, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas:A comparative study[J]. Catal Sci Technol, 2013, 3(6):1591-1602. doi: 10.1039/c3cy00063j
    [10]
    NAGHASH A R, ETSELL T H, XU S. XRD and XPS study of Cu-Ni interactions on reduced copper-nickel-aluminum oxide solid solution catalysts[J]. Chem Mater, 2006, 18:2480-2488. doi: 10.1021/cm051910o
    [11]
    ZANDER S, E L KUNKES E L, SCHUSTER M E, SCHUMANN J, WEINBERG G, TESCHNER D, JACOBSEN N, SCHLOGL R, BEHRENS M. The role of the oxide component in the development of copper composite catalysts for methanol synthesis[J]. Angew Chem Int Ed Eng, 2013, 52(25):6536-6540. doi: 10.1002/anie.201301419
    [12]
    李忠, 张小兵, 郭启海, 刘岩, 郑华艳.沉淀及老化温度对浆态床合成甲醇CuO/ZnO/Al2O3催化剂活性及稳定性的影响[J].燃料化学学报, 2012, 40(5):569-575. doi: 10.3969/j.issn.0253-2409.2012.05.010

    LI Zhong, ZHANG Xiao-bing, GUO Qi-hai, LIU Yan, ZHENG Hua-yan. Influence of precipitation and aging temperature on the performance of CuO/ZnO/Al2O3 catalyst for methanol synthesis in slurry reactor[J]. J Fuel Chem Technol, 2012, 40(5):569-575. doi: 10.3969/j.issn.0253-2409.2012.05.010
    [13]
    BEHRENS M, GIRGSDIES F. Structural effects of Cu/Zn substitution in the malachite-rosasite system[J]. Z Anorg Allg Chem, 2010, 636(6):919-927. doi: 10.1002/zaac.201000028
    [14]
    BEHRENS M. Coprecipitation:An excellent tool for the synthesis of supported metal catalysts-from the understanding of the well known recipes to new materials[J]. Catal Today, 2015, 246:46-54. doi: 10.1016/j.cattod.2014.07.050
    [15]
    BEHRENS M. Meso-and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. J Catal, 2009, 267(1):24-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=913a94f28cfbe76c4f82140052fd3cb9
    [16]
    LI J, ZHENG H Y, ZHANG X C, LI Z. First-principles investigation on Cu/ZnO catalyst precursor:Energetic, structural and electronic properties of Zn-doped Cu2(OH)2CO3[J]. Comp Mater Sci, 2015, 96:1-9. doi: 10.1016/j.commatsci.2014.08.038
    [17]
    房德仁, 刘中民, 徐秀峰, 张慧敏.老化时间对Cu/ZnO/Al2O3合成甲醇催化剂性能的影响[J].燃料化学学报, 2006, 34(1):96-99. doi: 10.3969/j.issn.0253-2409.2006.01.020

    FANG De-ren, LIU Zhong-ming, XU Xiu-feng, ZHANG Hui-min. Influence of aging time on the properties of Cu/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Fuel Chem Technol, 2006, 34(1):96-99. doi: 10.3969/j.issn.0253-2409.2006.01.020
    [18]
    TARASOV A, SCHUMANN J, GIRGSDIES F, THOMAS N, BEHRENS M. Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts[J]. Thermochim Acta, 2014, 591(0):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a3b6b7af127f47c47db90613f54cac6c
    [19]
    GAO Y, MENG F H, JI K M, SONG Y, LI Z. Slurry phase methanation of carbon monoxide over nanosized Ni-Al2O3 catalysts prepared by microwave-assisted solution combustion[J]. Appl Catal A:Gen, 2016, 510:74-83. doi: 10.1016/j.apcata.2015.11.006
    [20]
    荆洁颖, 张子毅, 王世东, 李文英.焙烧温度对Ni/CaO-Al2O3结构及其催化重整性能的影响[J].燃料化学学报, 2018, 46(6):673-679. doi: 10.3969/j.issn.0253-2409.2018.06.005

    JING Jie-ying, ZHANG Zi-yi, WANG Shi-dong, LI Wen-ying. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol, 2018, 46(6):673-679. doi: 10.3969/j.issn.0253-2409.2018.06.005
    [21]
    BEHRENS M, STUDT F, KASATKIN I, KUHL S, HAVECKER M, ABILD-PEDERSEN F, ZANDER S, GIRGSDIES F, KURR P, KNIEP B L, TOVAR M, FISCHER R W, NORSKOV J K, SCHLOGL R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083):893-897. doi: 10.1126/science.1219831
    [22]
    WU Q X, DUCHSTEIN L D L, CHIARELLO G L, CHRISTENSEN J M, DAMSGAARD C D, ELKJAR C F, WAGNER J B, TEMEL B, GRUNWALDT J D, JENSEN A D. In situ observation of Cu-Ni alloy nanoparticle formation by X-Ray diffraction, X-Ray absorption spectroscopy, and transmission electron microscopy:Influence of Cu/Ni ratio[J]. ChemCatChem, 2014, 6(1):301-310. doi: 10.1002/cctc.v6.1
    [23]
    CAO A, LIU G L, YUE Y Z, ZHANG L H, LIU Y. Nanoparticles of Cu-Co alloy derived from layered double hydroxides and their catalytic performance for higher alcohol synthesis from syngas[J]. RSC Adv, 2015, 5(72):58804-58812. doi: 10.1039/C5RA05190H
    [24]
    郭强胜, 毛东森, 俞俊, 韩璐蓬.不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响[J].燃料化学学报, 2012, 40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013

    GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012, 40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return