Volume 46 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
DENG Li-fang, DONG Ge, CAI Xi-xi, TANG Jia-huan, YUAN Hao-ran. Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 120-128.
Citation: DENG Li-fang, DONG Ge, CAI Xi-xi, TANG Jia-huan, YUAN Hao-ran. Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 120-128.

Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution

Funds:

the National Basic Research Program of China 973 Program

the National Basic Research Program of China 2015BAL04B02

the National Basic Research Program of China YZ201516

Guangdong Provincial Projects 2015B090904009

Guangdong Provincial Projects 2016A040403096

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation (Fujian Agriculture and Forestry University) ptjh16002

More Information
  • Corresponding author: YUAN Hao-ran, Tel: 020-87013241, E-mail: yuanhaoran81@gmail.com
  • Received Date: 2017-06-22
  • Rev Recd Date: 2017-10-12
  • Available Online: 2021-01-23
  • Publish Date: 2018-01-10
  • Biochar nano-sheets (BXG-AC) with high surface area and porous structure were prepared by direct pyrolysis of the inner membrane of passion fruit and subsequent KOH activation. The morphology and surface elemental composition of BXG-AC were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) and the electrochemical behaviors were investigated by cyclic voltammetry and linear sweep voltammograms (LSV). The results indicate that in neutral media, the as-prepared BXG-AC catalyst exhibits remarkable electrocatalytical activity; a maximum power density of 1153.3 mW/m2 is achieved in the microbial fuel cells (MFCs), which is comparable to that of commercial Pt/C (1214.3 mW/m2). Furthermore, the BXG-AC cathode also displays a great long-term stability; the MFC output decreases slightly after operation for more than 60 cycles. This study demonstrates that the biochar nano-sheets derived from the inner membrane of passion fruit is probably a cost-efficient and promising cathodic catalyst for the scale-up MFCs.
  • loading
  • [1]
    LOGAN B E, HAMELERS B, ROZENDAL R, SCHRODER U, KELLER J, FREGUIA S, AELERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells:Methodology and technology[J]. Environ Sci Technol, 2006, 40(17):5181-5192. doi: 10.1021/es0605016
    [2]
    周秀秀, 顾早立, 郝小旋, 张姣, 张志强, 夏四清.剩余污泥燃料电池处理含铬废水的效能及机理[J].中国环境科学, 2014, 34(9):2245-2251. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zghjkx201409013

    ZHOU Xiu-xiu, GU Zao-li, HAO Xiao-xuan, ZHANG Jiao, ZHANG Zhi-qiang, XIA Si-qing. Efficacy and mechanism of microbial fuel cell treating Cr (VI)-containing wastewater with excess sludge as substrate[J]. China Environ Sci, 2014, 34(9):2245-2251. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zghjkx201409013
    [3]
    ROZENDAL R A, HAMELERS H V M, RABAEY K, KELLER J, BUISMAN C J N. Towards practical implementation of bioelectrochemical wastewater treatment[J]. Trends Biotechnol, 2008, 26(8):450-459. doi: 10.1016/j.tibtech.2008.04.008
    [4]
    FENG L Y, YAN Y Y, CHEN Y G, WANG L J. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells[J]. Energy Environ Sci, 2011, 4(5):1892-1899. doi: 10.1039/c1ee01153g
    [5]
    白立俊, 王许云, 何海波, 郭庆杰. M-N-C阴极催化剂的制备及其在微生物燃料电池中的应用[J].化工学报, 2014, 65(4):1267-1272. doi: 10.3969/j.issn.0438-1157.2014.04.016

    BAI Li-jun, WANG Xu-yun, HE Hai-bo, GUO Qing-jie. Preparation and characterization of M-N-C as cathode catalysts for microbial fuel cell[J]. CIESC J, 2014, 65(4):1267-1272. doi: 10.3969/j.issn.0438-1157.2014.04.016
    [6]
    HUILONG F, RUQUAN Y, GONGLAN Y. Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction[J]. ACS Nano, 2014, 8(10):10837-10843. doi: 10.1021/nn504637y
    [7]
    WAN W, WANG Q, ZHANG L. N-, P-and Fe-tridoped nanoporous carbon derived from plant biomass:An excellent oxygen reduction electrocatalyst for zinc-air battery[J]. J Mater Chem A, 2016, 4(22):8602-8609. doi: 10.1039/C6TA02150F
    [8]
    ZHOU L H, FU P, WEN D H, YUAN Y, ZHOU S G. Self-constructed carbon nanoparticles-coated porous biocarbon from plant moss as advanced oxygen reduction catalysts[J]. Appl Catal B:Environ, 2016, 181:635-643. doi: 10.1016/j.apcatb.2015.08.035
    [9]
    YUAN H R, DENG L F, CAI X X, ZHOU S G, CHEN Y, YUAN Y. Nitrogen-doped carbon sheets derived from chitin as non-metal bifunctional electrocatalysts for oxygen reduction and evolution[J]. RSC Adv, 2015, 5(69):56121-56129. doi: 10.1039/C5RA05461C
    [10]
    SONG M Y, PARK H Y, YANG D S, BHATTACHARJVA D, YU J S. Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction[J]. ChemSusChem, 2014, 7(6):1764-1764. doi: 10.1002/cssc.201490026
    [11]
    GAO S, FAN H, ZHANG S. Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity[J]. J Mater Chem A, 2014, 2(43):18263-18270. doi: 10.1039/C4TA03558E
    [12]
    YANG W, LI J, YE D D, ZHU X, LIAO Q. Bamboo charcoal as a cost-effective catalyst for an air-cathode of microbial fuel cells[J]. Electrochim Acta, 2017, 224:585-592. doi: 10.1016/j.electacta.2016.12.046
    [13]
    MA Y W, ZHANG L R, LI J J, NI H T, LI M, ZHANG J L, FENG X M, FAN Q L, HU Z, HUANG W. Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction[J]. Chin Sci Bull, 2011, 56(33):3583-3589. doi: 10.1007/s11434-011-4730-6
    [14]
    AHMED J, KIM H J, KIM S. Polyaniline nanofiber/carbon black composite as oxygen reduction catalyst for air cathode microbial fuel cells[J]. J Electrochem Soc, 2012, 159(5):B497-B501. doi: 10.1149/2.049205jes
    [15]
    DENG L F, YUAN H R, CAI X X, RUAN Y Y, ZHOU S G, CHEN Y, YUAN Y. Honeycomb-like hierarchical carbon derived from livestock sewage sludge as oxygen reduction reaction catalysts in microbial fuel cells[J]. Int J Hydrogen Energy, 2016, 41(47):22328-22336. doi: 10.1016/j.ijhydene.2016.08.132
    [16]
    FENG H B, ZHENG M T, DONG H W, HA H, YONG X, SUN Z X, LONG C, CAI Y J, ZHAO X, ZHANG H R, LEI B F, Liu Y L. Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge[J]. J Mater Chem A, 2015, 3(29):15225-15234. doi: 10.1039/C5TA03217B
    [17]
    DAS A, PISANA S, CHAKRABORTY B, PISCANEC S, SAHA S K, WAGHMARE U V, NOVOSELOV K S, KRISHNAMURTHY H R, GEIM A K, FERRARI A C, SOOD A K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nat Nanotechnol, 2008, 3(4):210-215. doi: 10.1038/nnano.2008.67
    [18]
    HARRY M, DENIS S Y. Formation of active carbons from cokes using potassium hydroxide[J]. Carbon, 1984, 22(6):603-611. doi: 10.1016/0008-6223(84)90096-4
    [19]
    GUO Y P, YANG S F, YU K F, ZHAO J Z, WANG Z C, XU H D. The preparation and mechanism studies of rice husk based porous carbon[J]. Mater Chem Phys, 2002, 74(3):320-323. doi: 10.1016/S0254-0584(01)00473-4
    [20]
    HIROKI A, THOMAS K, FRANCO C, WILLIAN R S, MILO S P S, ALAN H W, RICHARD H F. Work functions and surface functional groups of multiwall carbon nanotubes[J]. J Phys Chem B, 1999, 103(28):8116-8121.
    [21]
    BAKER S E, CAI W, KASSETER T L, WEIDKAMP K P, HAMERS R J. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes:Synthesis and hybridization[J]. Nano Lett, 2002, 2(12):1413-1417. doi: 10.1021/nl025729f
    [22]
    MARTINEZ M T, CALLEJAS M A, BENITO A M, COCHET M. Sensitivity of single wall carbon nanotubes to oxidative processing:structural modification, intercalation and functionalization[J]. Carbon, 2003, 41(12):2247-2256. doi: 10.1016/S0008-6223(03)00250-1
    [23]
    TAN Z A, ZHANG W Q, QIAN D P, CUI C H, XU Q, LI L J, LI S S, LI Y F. Solution-processed nickel acetate as hole collection layer for polymer solar cells[J]. Phys Chem Chem Phys, 2012, 14(41):14217-14223. doi: 10.1039/c2cp41465a
    [24]
    JIANG H L, ZHU Y H, FENG Q, SU Y H, YANG X L, LI C Z. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Chem Eur J, 2014, 20(11):3106-3112. doi: 10.1002/chem.201304561
    [25]
    LIU Q, CHEN S L, ZHOU Y, ZHENG S Q, HOU H Q, ZHAO F. Phosphorus-doped carbon derived from cellulose phosphate as efficient catalyst for air-cathode in microbial fuel cells[J]. J Power Sources, 2014, 261:245-248. doi: 10.1016/j.jpowsour.2014.03.060
    [26]
    SHAO Y Y, SUI J H, YIN G P, GAO Y Z. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell[J]. Appl Catal B:Environ, 2008, 79(1):89-99. doi: 10.1016/j.apcatb.2007.09.047
    [27]
    YANG D S, BHATTACHARJYA D, INAMDAR S, PARK J, YU J S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J Am Chem Soc, 2012, 134(39):16127-16130. doi: 10.1021/ja306376s
    [28]
    JIANG H L, ZHU Y H, FENG Q, SU Y H, YANG X L, LI C Z. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Chem Eur J, 2014, 20(11):3106-3112. doi: 10.1002/chem.201304561
    [29]
    SU Y H, JIANG H L, ZHU Y H, ZOU W J, YANG X L, CHEN J D, LI C Z. Hierarchical porous iron and nitrogen co-doped carbons as efficient oxygen reduction electrocatalysts in neutral media[J]. J Power Sources, 2014, 265:246-253. doi: 10.1016/j.jpowsour.2014.04.140
    [30]
    FENG L Y, CHEN Y G, CHEN L. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped raphene and its application as cathode catalyst in microbial fuel cells[J]. ACS Nano, 2011, 5(12):9611-9618. doi: 10.1021/nn202906f
    [31]
    WANG R, WANG H, ZHOU T. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction[J]. J Power Sources, 2015, 274:741-747. doi: 10.1016/j.jpowsour.2014.10.049
    [32]
    ROCHE I, CHAINET E, CHATENET M, VONDRAK J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium:Physical characterizations and ORR mechanism[J]. J Phys Chem C, 2007, 111(3):1434-1443. doi: 10.1021/jp0647986
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return