Volume 47 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
HUANG Hui-wen, ZHU Hui, ZHANG Shan-he, ZHANG Qiang, LI Chun-yi. Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 74-83.
Citation: HUANG Hui-wen, ZHU Hui, ZHANG Shan-he, ZHANG Qiang, LI Chun-yi. Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 74-83.

Effect of silicon to aluminum ratio on the selectivity to propene in methanol conversion over H-ZSM-5 zeolites

Funds:

the National 973 Program of China 2012CB215006

Research Fund for the Doctoral Programme of Higher Education 14CX06035A

More Information
  • Corresponding author: LI Chun-yi, E-mail:chuyli@upc.edu.cn
  • Received Date: 2018-10-09
  • Rev Recd Date: 2018-11-14
  • Available Online: 2021-01-23
  • Publish Date: 2019-01-10
  • A series of H-ZSM-5 zeolites with a silicon to aluminum ratio of 50-4000 but similar crystal size were synthesized and characterized by XRD, N2 sorption, NH3-TPD and Py-FTIR; the intrinsic effect of silicon to aluminum ratio on the selectivity to propene in the conversion of methanol to propene (MTP) was investigated. The results show that a complete conversion of methanol can be initially achieved over H-ZSM-5 with a silicon to aluminum ratio from 50 to 1600 and then the initial conversion of methanol decreases progressively with further increasing the silicon to aluminum ratio. Meanwhile, the selectivity to propene increases monotonically with an increase in the silicon to aluminum ratio of H-ZSM-5 for MTP with a complete methanol conversion, suggesting that a high Si/Al ratio for H-ZSM-5 may enhance the propagation of the alkene-based methylation/cracking cycle relative to the arene-based methylation/dealkylation cycle in MTP. A critical value of acid density, viz., [AS]S, is required to achieve the maximum propene selectivity for MTP with a complete methanol conversion; this critical[AS]S value is 0.175 μmol/m2 for the H-ZSM-5 zeolite under current reaction conditions.
  • loading
  • [1]
    MEI C, WEN P, LIU Z, LIU H, WANG Y, YANG W, XIE Z, HUA W, GAO Z. Selective production of propylene from methanol:Mesoporosity development in high silica HZSM-5[J]. J Catal, 2008, 258(1):243-249. doi: 10.1016/j.jcat.2008.06.019
    [2]
    LIU J, ZHANG C, SHEN Z, HUA W, TANG Y, SHEN W, YUE Y, XU H. Methanol to propylene:Effect of phosphorus on a high silica HZSM-5 catalyst[J]. Catal Commun, 2009, 10(11):1506-1509. doi: 10.1016/j.catcom.2009.04.004
    [3]
    HUANG H, MENG X, CHEN C, ZHANG M, MENG Z, LI C, CUI Q. Effect of phosphorus addition on the performance of hierarchical ZSM-11 catalysts in methanol to propene reaction[J]. Catal Lett, 2016, 146(11):2357-2363. doi: 10.1007/s10562-016-1867-6
    [4]
    SUN C, DU J, LIU J, YANG Y, REN N, SHEN W, XU H, TANG Y. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction[J]. Chem Commun, 2010, 46(15):2671-2673. doi: 10.1039/b925850g
    [5]
    ZHAO G, TENG J, XIE Z, JIN W, YANG W, CHEN Q, TANG Y. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. J Catal, 2007, 248(1):29-37. doi: 10.1016/j.jcat.2007.02.027
    [6]
    CHEN J Q, BOZZANO A, GLOVER B, FUGLERUD T, KVISLE S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal Today, 2005, 106(1/4):103-107. http://www.sciencedirect.com/science/article/pii/S0920586105005195
    [7]
    HICKMAN D A, SCHMIDT L D. Production of syngas by direct catalytic oxidation of methane[J]. Science, 1993, 259(5093):343-346. doi: 10.1126/science.259.5093.343
    [8]
    ASADULLAH M, ITO S, KUNIMORI K, YAMADA M, TOMISHIGE K. Biomass gasification to hydrogen and syngas at low temperature:Novel catalytic system using fluidized-bed reactor[J]. J Catal, 2002, 208(2):255-259. doi: 10.1006/jcat.2002.3575
    [9]
    WU W, GUO W, XIAO W, LUO M. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5[J]. Chem Eng Sci, 2011, 66(20):4722-4732. doi: 10.1016/j.ces.2011.06.036
    [10]
    CHANG C D, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal, 1977, 47(2):249-259. doi: 10.1016/0021-9517(77)90172-5
    [11]
    YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun, 2012, 24:44-47. doi: 10.1016/j.catcom.2012.03.013
    [12]
    LEE Y J, KIM Y W, VISWANADHAM N, JUN K W, BAE J W. Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction[J]. Appl Catal A:Gen, 2010, 374(1/2):18-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=489c5044660d8e94c2c9a6ec9ff4f0d4
    [13]
    ROSTAMIZADEH M, TAEB A. Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP)[J]. J Ind Eng Chem, 2015, 27:297-306. doi: 10.1016/j.jiec.2015.01.004
    [14]
    OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51(24):5810-5831. doi: 10.1002/anie.201103657
    [15]
    MENG X, YU Q, GAO Y, ZHANG Q, LI C, CUI Q. Enhanced propene/ethene selectivity for methanol conversion over pure silica zeolite:Role of hydrogen-bonded silanol groups[J]. Catal Commun, 2015, 61:67-71. doi: 10.1016/j.catcom.2014.12.011
    [16]
    HU S, GONG Y, XU Q, LIU X, ZHANG Q, ZHANG L, DOU T. Highly selective formation of propylene from methanol over high-silica EU-1 zeolite catalyst[J]. Catal Commun, 2012, 28:95-99. doi: 10.1016/j.catcom.2012.08.011
    [17]
    CHANG C D, CHU C T W, SOCHA R F. Methanol conversion to olefins over ZSM-5:Ⅰ. Effect of temperature and zeolite SiO2Al2O3[J]. J Catal, 1984, 86(2):289-296. doi: 10.1016/0021-9517(84)90374-9
    [18]
    ZHU Q, KONDO J N, SETOYAMA T, YAMAGUCHI M, DOMEN K, TATSUMI T. Activation of hydrocarbons on acidic zeolites:Superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chem Commun, 2008, (41):5164-5166. doi: 10.1039/b809718f
    [19]
    ZHU Q, KONDO J N, YOKOI T, SETOYAMA T, YAMAGUCHI M, TAKEWAKI T, DOMEN K, TATSUMI T. The influence of acidities of boron-and aluminium-containing MFI zeolites on co-reaction of methanol and ethene[J]. Phys Chem Chem Phys, 2011, 13(32):14598-14605. doi: 10.1039/c1cp20338j
    [20]
    HASSANPOUR S, TAGHIZADEH M, YARIPOUR F. Preparation, characterization, and activity evaluation of H-ZSM-5 catalysts in vapor-phase methanol dehydration to dimethyl ether[J]. Ind Eng Chem Res, 2010, 49(9):4063-4069. doi: 10.1021/ie9013869
    [21]
    FATHI S, SOHRABI M, FALAMAKI C. Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reactions[J]. Fuel, 2014, 116:529-537. doi: 10.1016/j.fuel.2013.08.036
    [22]
    WAN Z, WU W, LI G, WANG C, YANG H, ZHANG D. Effect of SiO2/Al2O3 ratio on the performance of nanocrystal ZSM-5 zeolite catalysts in methanol to gasoline conversion[J]. Appl Catal A:Gen, 2016, 523:312-320. doi: 10.1016/j.apcata.2016.05.032
    [23]
    MICHELS N L, MITCHELL S, PEREZ-RAMIREZ J. Effects of binders on the performance of shaped hierarchical MFI zeolites in methanol-to-hydrocarbons[J]. ACS Catal, 2014, 4(8):2409-2417. doi: 10.1021/cs500353b
    [24]
    ZHANG C, WU Q, LEI C, PAN S, BIAN C, WANG L, MENG X, XIAO F S. Solvent-free and mesoporogen-free synthesis of mesoporous aluminosilicate ZSM-5 zeolites with superior catalytic properties in the methanol-to-olefins reaction[J]. Ind Eng Chem Res, 2017, 56(6):1450-1460. doi: 10.1021/acs.iecr.7b00062
    [25]
    WEI R, LI C, YANG C, SHAN H. Effects of ammonium exchange and Si/Al ratio on the conversion of methanol to propylene over a novel and large partical size ZSM-5[J]. J Nat Gas Chem, 2011, 20(3):261-265. doi: 10.1016/S1003-9953(10)60198-3
    [26]
    EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141(2):347-354. doi: 10.1006/jcat.1993.1145
    [27]
    BENITO P L, GAYUBO A G, AGUAYO A T, OLAZAR M, BILBAO J. Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary products of methanol to gasoline conversion[J]. J Chem Technol Biot, 1996, 66(2):183-191. doi: 10.1002/(ISSN)1097-4660
    [28]
    PARRY E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. J Catal, 1963, 2(5):371-379. doi: 10.1016/0021-9517(63)90102-7
    [29]
    OTHMAN I, MOHAMED R M, IBRAHIM I A, MOHAMED M M. Synthesis and modification of ZSM-5 with manganese and lanthanum and their effects on decolorization of indigo carmine dye[J]. Appl Catal A:Gen, 2006, 299:95-102. doi: 10.1016/j.apcata.2005.10.016
    [30]
    FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun, 2009, 10(12):1582-1585. doi: 10.1016/j.catcom.2009.04.021
    [31]
    CAMPBELL S M, BIBBY D M, CODDINGTON J M, HOWE R F. Dealumination of HZSM-5 zeolites:Ⅱ. Methanol to gasoline conversion[J]. J Catal, 1996, 161(1):350-358. doi: 10.1006/jcat.1996.0192
    [32]
    STØCKER M. Methanol-to-hydrocarbons:Catalytic materials and their behavior1[J]. Microporous Mesoporous Mater, 1999, 29(1/2):3-48. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201205011
    [33]
    BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBOC L, BORDIGAC S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. J Catal, 2007, 249(2):195-207. doi: 10.1016/j.jcat.2007.04.006
    [34]
    HAW J F, SONG W G, MARCUD D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res, 2003, 36(5):317-326. doi: 10.1021/ar020006o
    [35]
    BJØRGEN M, JOENSEN F, LILLERUD K P, OLSBYE U, SVELLE S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta[J]. Catal Today, 2009, 142(1/2):90-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d44715c411115d671895ca3bfe9fd9d8
    [36]
    SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006, 128(46):14770-14771. doi: 10.1021/ja065810a
    [37]
    SVELLE S, OLSBYE U, JOENSEN F, BJØRGEN M. Conversion of methanol to alkenes over medium-and large-pore acidic zeolites:Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J Phys Chem C, 2007, 111(49):17981-17984. doi: 10.1021/jp077331j
    [38]
    SVELLE S, RØNNING P O, KOLBOE S. Kinetic studies of zeolite-catalyzed methylation reactions:1. Coreaction of[12C] ethene and[13C] methanol[J]. J Catal, 2004, 224(1):115-123. doi: 10.1016/j.jcat.2004.02.022
    [39]
    SVELLE S, RØNNING P O, OLSBYE U, KOLBOE S. Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of[12C] propene or[12C] n-butene and[13C] methanol[J]. J Catal, 2005, 234(2):385-400. doi: 10.1016/j.jcat.2005.06.028
    [40]
    HILL I M, AL HASHIMI S, BHAN A. Kinetics and mechanism of olefin methylation reactions on zeolites[J]. J Catal, 2012, 285(1):115-123. doi: 10.1016/j.jcat.2011.09.018
    [41]
    HILL I M, NG Y S, BHAN A. Kinetics of butene isomer methylation with dimethyl ether over zeolite catalysts[J]. ACS Catal, 2012, 2(8):1742-1748. doi: 10.1021/cs300317p
    [42]
    SUN X, MULLER S, SHI H, HALLER G L, SANCHEZ-SANCHEZ M, VAN VEEN A C, LERCHER J A. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5[J]. J Catal, 2014, 314:21-31. doi: 10.1016/j.jcat.2014.03.013
    [43]
    ILIAS S, KHARE R, MALEK A, BHAN A. A descriptor for the relative propagation of the aromatic-and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal, 2013, 303:135-140. doi: 10.1016/j.jcat.2013.03.021
    [44]
    KHARE R, LIU Z, HAN Y, BHAN A. A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5[J]. J Catal, 2017, 348:300-305. doi: 10.1016/j.jcat.2017.02.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return