Volume 47 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
LI Yang, CHEN Wei, ZHAO Yong-chun, LI Hai-long, ZHANG Jun-ying, LI Jie, HU Hao-quan. Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1409-1416.
Citation: LI Yang, CHEN Wei, ZHAO Yong-chun, LI Hai-long, ZHANG Jun-ying, LI Jie, HU Hao-quan. Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1409-1416.

Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex

Funds:

the National Natural Science Foundation of China 21776039

National Natural Science Foundation for Young Scientist of China 51306028

the Fundamental Research Funds for the Central Universities DUT2018TB0

More Information
  • Corresponding author: HU Hao-quan, Tel: 0411-84986157, E-mail: hhu@dlut.edu.cn
  • Received Date: 2019-05-14
  • Rev Recd Date: 2019-10-17
  • Available Online: 2021-01-23
  • Publish Date: 2019-12-10
  • The Fe/Al-SiO2 composite metal oxides were prepared by various methods to simulate the composition of red mud. A series of experiments were carried out to study the mercury removal performance from simulated flue gas. The results show that the composite metal oxide obtained by sol-gel method has an excellent mercury removal performance in a temperature range of 300-450 ℃. Among them, average mercury removal efficiency can reach 94.8% within 3 h at 350 ℃. Fe2O3 provides lattice oxygen and chemical adsorbed oxygen for the oxidation of Hg0, and SiO2 is conducive to the dispersion of the active component Fe2O3, which enhances the contact between Hg0 and the active sites. In the presence of trace HCl and NO in flue gas, the removal efficiency of Hg0 is close to 100%. However, the average mercury removal efficiency reduces to 90.7% and 53.4% respectively after adding 0.2 mL/min and 0.4 mL/min SO2, since the reaction of SO2 and Fe2O3 produces Fe2(SO4)3, leading to the deactivation of Fe2O3.
  • loading
  • [1]
    UNEP. Global Mercury Assessment 2018 Review Draft: Sources, Emissions, Releases and Environmental Transport. Geneva: UNEP Chemicals Branch. 2018.
    [2]
    DB14/T1703, 燃煤电厂大气污染物排放标准[S].

    DB14/T1703, Standard emissions of atmospheric pollutants for coal-fired power plants[S].
    [3]
    YANG J, YANG Q, SUN J, LIU Q C, ZHAO D, GAO W, LIU L. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015, 59:78-82. doi: 10.1016/j.catcom.2014.09.049
    [4]
    HSU C J, CHIOU H J, CHEN Y H, LIN K S, ROOD M J, HIS H C. Mercury adsorption and re-emission inhibition from actual WFGD wastewater using sulfur-containing activated carbon[J]. Environ Res, 2019, 168:319-328. doi: 10.1016/j.envres.2018.10.017
    [5]
    GRANITE E J, PENNLINE H W, HARGIS R A. Novel sorbents for mercury removal from flue gas[J]. Ind Eng Chem Res, 2000, 39(4):1020-1029. doi: 10.1021/ie990758v
    [6]
    ZHAO S L, PUDASAINEE D, DUAN Y F, GUPTA R, LIU M. A review on mercury in coal combustion process:Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Prog Energy Combust, 2019, 73:26-64. doi: 10.1016/j.pecs.2019.02.001
    [7]
    WANG P Y, SU S, XIANG J, CAO F, SUN L S, HU S, LEI S Y. Catalytic oxidation of Hg0 by CuO-MnO2-Fe2O3/γ-Al2O3 catalyst[J]. Chem Eng J, 2013, 225:68-75. doi: 10.1016/j.cej.2013.03.060
    [8]
    郝凯辉.改性赤泥基吸附剂用于燃煤烟气中汞的脱除[D].大连: 大连理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017823742.htm

    HAO Kai-hui. Removal of elemental mercury from flue gas over modified red mud based sorbents[D]. Dalian: Dalian University of Technology, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017823742.htm
    [9]
    CAO S T, MA H J, ZHANG Y, CHEN X F, ZHANG Y F. The phase transition in Bayer red mud from China in high caustic sodium aluminate solutions[J]. Hydrometallurgy, 2013, 140:111-119. doi: 10.1016/j.hydromet.2013.09.009
    [10]
    KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resour Conserv Recycl, 2019, 141:483-498. doi: 10.1016/j.resconrec.2018.11.006
    [11]
    WANG X P, SUN T C, WU S C, CHEN C, KOU J, XU C Y. A novel utilization of Bayer red mud through co-reduction with a limonitic laterite ore to prepare ferronickel[J]. J Cleaner Prod, 2019, 216:33-41. doi: 10.1016/j.jclepro.2019.01.176
    [12]
    SKODRAS G, DIAMANTOPOULOU I, SAKELLAROPOULOS G P. Role of activated carbon structural properties and surface chemistry in mercury adsorption[J]. Desalination, 2007, 210(1/3):281-286. http://cn.bing.com/academic/profile?id=f781b1d179ff7b246f08f94ee79af493&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    KONG F H, QIU J R, LIU H, ZHAO R, AI Z H. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3[J]. J Environ Sci (China), 2011, 23(4):699-704. doi: 10.1016/S1001-0742(10)60438-X
    [14]
    ZHANG A C, ZHANG Z H, SHI J M, CHEN G Y, ZHOU C S, SUN L S. Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance[J]. J Fuel Chem Technol, 2015, 43(10):1258-1266. doi: 10.1016/S1872-5813(15)30038-4
    [15]
    LIAO Y, XIONG S C, DANG H, XIAO X, YANG S J, WONG P K.The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel[J]. J Hazard Mater, 2015, 299:740-746. doi: 10.1016/j.jhazmat.2015.07.083
    [16]
    LIU T, MAN C Y, GUO X, ZHENG C G. Experimental study on the mechanism of mercury removal with Fe2O3 in the presence of halogens:Role of HCl and HBr[J]. Fuel, 2016, 173:209-216. doi: 10.1016/j.fuel.2016.01.054
    [17]
    KO K B, BYAN Y C, CHO M Y, NAMKUNG W, SHIN D N, KOH D J, KIM K T. Influence of HCl on oxidation of gaseous elemental mercury by dielectric barrier discharge process[J]. Chemosphere, 2008, 71(9):1674-1682. doi: 10.1016/j.chemosphere.2008.01.015
    [18]
    ZHANG A C, ZHENG W W, SONG J, HU S, LIU Z C, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014, 236:29-38. doi: 10.1016/j.cej.2013.09.060
    [19]
    LIU W, XU H M, LIAO Y, QUAN Z W, LI S C, ZHAO S J, QU Z, YAN N Q. Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas[J]. Fuel, 2019, 235:847-854. doi: 10.1016/j.fuel.2018.08.062
    [20]
    GUEDES A, VALENTIM B, PRIETO A C, SANZ A, FLORES D, NORONHA F. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy[J]. Int J Coal Geol, 2008, 73(3/4):359-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=839549dab048935e88e06e3379ac5366
    [21]
    DONG Y, REN X Y, QU R Y, LIU S J, ZHENG C H, GAO X. Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3[J]. Mol Catal, 2019, 462:10-18. doi: 10.1016/j.mcat.2018.10.007
    [22]
    XIANG J, WANG P Y, SU S, ZHANG L Q, CAO F, SUN Z J, XIAO X, SUN L S, H U S. Control of NO and Hg0 emissions by SCR catalysts from coal-fired boiler[J]. Fuel Process Technol, 2015, 135:168-173. doi: 10.1016/j.fuproc.2014.12.044
    [23]
    LIU J, GUO R T, GUAN Z Z, SUN X, PAN W G, LIU X Y, WANG Z Y, SHI X, QIN H, QIU Z Z, LIU S W. Simultaneous removal of NO and Hg0 over Nb-modified MnTiOx catalyst[J]. Int J Hydrogen Energy, 2019, 44(2):835-843. doi: 10.1016/j.ijhydene.2018.11.006
    [24]
    KIM S C, NAHM S W, PARK Y K. Property and performance of red mud-based catalysts for the complete oxidation of volatile organic compounds[J]. J Hazard Mater, 2015, 300:104-113. doi: 10.1016/j.jhazmat.2015.06.059
    [25]
    HE C, SHEN B X, LI F K. Effects of flue gas components on removal of elemental mercury over Ce-MnOx/Ti-PILCs[J]. J Hazard Mater, 2016, 304:10-17. doi: 10.1016/j.jhazmat.2015.10.044
    [26]
    LI G L, SHEN B X, LI Y W, ZHAO B, WANG F M, HE C, WANG Y Y, ZHANG M. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions[J]. J Hazard Mater, 2015, 298:162-169. doi: 10.1016/j.jhazmat.2015.05.031
    [27]
    CHEN Y, GUO X, WU F, HUANG Y, YIN Z C. Mechanisms of mercury transformation over α-Fe2O3 (001) in the presence of HCl and/or H2S[J]. Fuel, 2018, 233:309-316. doi: 10.1016/j.fuel.2018.06.065
    [28]
    JIANG S J, LIU X, LI H L, WANG J, YANG Z Q, PENG H Y, SHI K M. Synergistic effect of HCl and NO in elemental mercury catalytic oxidation over La2O3-TiO2 catalyst[J]. Fuel, 2018, 215:232-238 doi: 10.1016/j.fuel.2017.11.015
    [29]
    ZHENG J M, SHAH K J, ZHOU J S, PAN S Y, CHIANG P C. Impact of HCl and O2 on removal of elemental mercury by heat-treated activated carbon:Integrated X-ray analysis[J]. Fuel Process Technol, 2017, 167:11-17. doi: 10.1016/j.fuproc.2017.06.017
    [30]
    YANG Y J, LIU J, WANG Z, LIU F. Heterogeneous reaction kinetics of mercury oxidation by HCl over Fe2O3 surface[J]. Fuel Process Technol, 2017, 159:266-271. doi: 10.1016/j.fuproc.2017.01.035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return