Volume 45 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
LEI Zhao, YANG Ding, ZHANG Yun-he, CUI Ping. Constructions of coal and char molecular models based on the molecular simulation technology[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 769-779.
Citation: LEI Zhao, YANG Ding, ZHANG Yun-he, CUI Ping. Constructions of coal and char molecular models based on the molecular simulation technology[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 769-779.

Constructions of coal and char molecular models based on the molecular simulation technology

Funds:

the National Natural Science Foundation of China 21476001

Key Project of Anhui Provincial Department of Education KJ2017A045

the Open Fund of Shaanxi Key Laboratory of Energy Chemical Process Intensification SXECPI201601

More Information
  • Corresponding author: CUI Ping, Tel: +86-555-2311807, Fax: +86-555-2311552, E-mail: mhgcp@126.com
  • Received Date: 2017-01-18
  • Rev Recd Date: 2017-04-27
  • Available Online: 2021-01-23
  • Publish Date: 2017-07-10
  • Coal and char are essential energy sources for the process industry. Insightful understanding of those molecules is useful to explore reactivities of coal and char. Therefore, coal and char molecular structures were investigated at atomic level using Materials Studio 7.0 software. Firstly, coal and char initial structures were constructed based on reported literatures. Secondly, those structures were improved by molecular mechanics, where functional group fragments were added to satisfy the property of coal or char. Then, the subsequent structures were optimized by annealing dynamics simulation to adjust density and elementary composition. Finally, the potential energies of coal and char were calculated using energy minimization method. It was pointed out that the estimated densities and elementary composition were agreements with the published literatures, which indicated that those structures were valid and reasonable. From the simulated results, it was shown that the Coulomb energy and van der Waals energy played a much more important role than other energies during the stabilizing molecular construction process. Thus, it was inferred that the weak bond was predominant in the thermal processing of coal or char. In addition, this work demonstrated that the molecular simulation technology was meaningful to construct the complex macromolecular structure.
  • loading
  • [1]
    World Coal Association, Annual Energy Report[EB/OL]. http://www.worldcoal.org/coal/, (accessed 2011).
    [2]
    China Analysis Report. U. S. Energy Information Administration (EIA)[EB/OL]. http://www.eia.gov/countries/cab.cfm?fips=CH, (accessed March 28, 2013).
    [3]
    FLETCHER T H, SOLUM M S, GRANT D M, PUGMIRE R J. Chemical structure of char in the transition from devolatilization to combustion[J]. Energy Fuels, 1992, 6(5):643-650. doi: 10.1021/ef00035a016
    [4]
    YU J L, LUCAS J A, WALL T F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:A review[J]. Prog Energy Combust Sci, 2007, 33(2):135-170. doi: 10.1016/j.pecs.2006.07.003
    [5]
    ZENG D, FLETCHER T H. Effects of pressure on coal pyrolysis and char morphology[J]. Energy Fuels, 2005, 19(5):1828-1838. doi: 10.1021/ef0500078
    [6]
    LU L M, SAHAJWALLA V, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J]. Energy Fuels, 2000, 14(4):869-876. doi: 10.1021/ef990236s
    [7]
    YOSHIZAWA N, MARUYAMAMA K, YAMASHITA T, AKIMOTO A. Dependence of microscopic structure and swelling property of DTF chars upon heat-treatment temperature[J]. Fuel, 2006, 85(14):2064-2070. http://www.sciencedirect.com/science/article/pii/S0016236106001190
    [8]
    KIDENA K, MATSUMOTO K, KATSUYAMA M, MURATA S, NOMURA M. Development of aromatic ring size in bituminous coals during heat treatment in the plastic temperature range[J]. Fuel Process Technol, 2004, 85(8):827-835. http://www.sciencedirect.com/science/article/pii/S0378382003002881
    [9]
    KULAOTS I, HSU A, SUUBERG E M. The role of porosity in char combustion[J]. Proc Combust Inst, 2007, 31(2):1897-1903. doi: 10.1016/j.proci.2006.08.004
    [10]
    MATSUOKA K, AKAHANE T, ASO H, SHARMA A, TOMITA A. The size of polyaromatic layer of coal char estimated from elemental analysis data[J]. Fuel, 2008, 87(4):539-545. http://www.sciencedirect.com/science/article/pii/S0016236107001214
    [11]
    DAVIS K A, HURT R H, YANG N Y C, HEADLEY T J. Evolution of char chemistry, crystallinity, and ultrafine structure during pulverized-coal combustion[J]. Combust Flame, 1995, 100(1):31-40. http://www.sciencedirect.com/science/article/pii/001021809400062W
    [12]
    SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
    [13]
    CAI H Y, GUELL A J, CHATZAKIS I N, LIM J Y, DUGWELL D R, KANDIYOTI R. Combustion reactivity and morphological change in coal chars:Effect of pyrolysis temperature, heating rate and pressure[J]. Fuel, 1996, 75(1):15-24. doi: 10.1016/0016-2361(94)00192-8
    [14]
    HURT R H. Reactivity distributions and extinction phenomena in coal char combustion[J]. Energy Fuels, 1993, 7(6):721-733. doi: 10.1021/ef00042a005
    [15]
    LIU G S, NIKSA S. Coal conversion submodels for design applications at elevated pressures. Part Ⅱ. Char gasification[J]. Prog Energy Combust Sci, 2004, 30(6):679-717. doi: 10.1016/j.pecs.2004.08.001
    [16]
    SOLOMON P R, SERIO M A, SUUBERG E M. Coal pyrolysis:Experiments, kinetic rates and mechanisms[J]. Prog Energy Combust Sci, 1992, 18(2):133-220. doi: 10.1016/0360-1285(92)90021-R
    [17]
    RADOVIC L R, WALKER P L, JENKINS R G. Importance of catalyst dispersion in the gasification of lignite chars[J]. J Catal, 1983, 82(2):382-394. doi: 10.1016/0021-9517(83)90205-1
    [18]
    DOMAZETIS G, JAMES B D, LIESEGANG J. Computer molecular models of low-rank coal and char containing inorganic complexes[J]. J Mol Model, 2008, 14(7):581-597. doi: 10.1007/s00894-008-0309-9
    [19]
    DOMAZETIS G, JAMES B D, LIESEGANG J. High-level computer molecular modeling for low-rank coal containing metal complexes and iron-catalyzed steam gasification[J]. Energy Fuels, 2008, 22(6):3994-4005. doi: 10.1021/ef800457t
    [20]
    DOMAZETIS G, LIESEGANG J, JAMES B D. Studies of inorganics added to low-rank coals for catalytic gasification[J]. Fuel Process Technol, 2005, 86(5):463-486. doi: 10.1016/j.fuproc.2004.03.009
    [21]
    ZHANG Y, CHEN D Y, ZHANG D, ZHU X F. TG-FTIR analysis of bio-oil and its pyrolysis/gasification property[J]. J Fuel Chem Technol, 2012, 40(10):1194-1199. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18043.shtml
    [22]
    XU X Q, WANG Y G, CHEN Z D, BAI L, ZHANG K J, YANG S S, ZHANG S. Influence of cooling treatments on char microstructure and reactivity of Shengli brown coal[J]. J Fuel Chem Technol, 2015, 43(1):1-8. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18547.shtml
    [23]
    MATHEWS J P, van Duin A, CHAFFEE A. The utility of coal molecular models[J]. Fuel Process Technol, 2011, 92(4):718-728. doi: 10.1016/j.fuproc.2010.05.037
    [24]
    CASTRO-MARCANO F, KAMAT A M, RUSSO JR M F, van Duin A C T, MATHEWS J P. Combustion of an Illinois No.6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field[J]. Combust Flame, 2012, 159:1272-1285. doi: 10.1016/j.combustflame.2011.10.022
    [25]
    STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions[J]. J Chem Phys, 2000, 112(14):6472-6486. doi: 10.1063/1.481208
    [26]
    VAN DUIN A C T, DASGUPTA S, LORANT F, GODDARD W A. ReaxFF:A reactive force field for hydrocarbons[J]. J Phys Chem A, 2001, 105(41):9396-9409. doi: 10.1021/jp004368u
    [27]
    HUANG L P, KIEFFER J. Molecular dynamics study of cristobalite silica using a charge transfer three-body potential:Phase transformation and structural disorder[J]. J Chem Phys, 2003, 118(3):1487-1498. doi: 10.1063/1.1529684
    [28]
    VAN DUIN A C T, STRACHAN A, STEWMAN S, ZHANG Q S, XU X, GODDARD W A. ReaxFFSiO reactive force field for silicon and silicon oxide systems[J]. J Phys Chem A, 2003, 107(19):3803-3811. doi: 10.1021/jp0276303
    [29]
    VIOLI A. Modeling of soot particle inception in aromatic and aliphatic premixed flames[J]. Combust Flame, 2004, 139(4):279-287. doi: 10.1016/j.combustflame.2004.08.013
    [30]
    CHENOWETH K, VAN DUIN A C T, GODDARD W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. J Phys Chem A, 2008, 112(5):1040-1053. doi: 10.1021/jp709896w
    [31]
    ROGEL E, CARBOGNANI L. Density estimation of asphaltenes using molecular dynamics simulations[J]. Energy Fuels, 2003, 17(2):378-86. doi: 10.1021/ef020200r
    [32]
    TAKANOHASHI T, KAWASHIMA H. Construction of a model structure for upper freeport coal using 13C NMR chemical shift calculations[J]. Energy Fuels, 2002, 16:379-387. doi: 10.1021/ef0101154
    [33]
    Materials Studio Help, 2007[K]. Accelrys Software Inc. , San Diego, USA.
    [34]
    LEI Z, YANG B, WEI J. Improved inheritance algorithm for the assembly of coal fragments[J]. Ind Eng Chem Res, 2015, 50:12392-12399. doi: 10.1021/ie201715q
    [35]
    CHEN H, LI J, LEI Z, GE L. Microwave-assisted extraction of shenfu coal and its macromolecule structure[J]. Min Sci Technol, 2009, 19(1):19-24. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zhkd200901006&dbname=CJFD&dbcode=CJFQ
    [36]
    ZHENG M, LI X, LIU J, GUO L. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy Fuels, 2013, 27:2942-2951. doi: 10.1021/ef400143z
    [37]
    NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. J Chem Phys, 1984, 81:511-519. doi: 10.1063/1.447334
    [38]
    ZHENG M, LI X, LIU J, WANG Z, GONG X, GUO L, SONG W. Pyrolysis of Liulin coal simulated by GPU-Based ReaxFF MD with chemin for matics analysis[J]. Energy Fuels, 2014, 28:522-534. doi: 10.1021/ef402140n
    [39]
    CHEREPANOV V B, CYR S L M, SOUTHERN B W. Metastable states of the potts glass[J]. J Phys A:Math Gen, 1992, 25(16):4347. doi: 10.1088/0305-4470/25/16/012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (80) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return