Volume 46 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
MENG De-xi, ZHANG Ke-yi, DU Hao-yu, XU Jian-liang, CHEN Xue-li. Morphology and structure evolution of flaky char particles during CO2 gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 787-795.
Citation: MENG De-xi, ZHANG Ke-yi, DU Hao-yu, XU Jian-liang, CHEN Xue-li. Morphology and structure evolution of flaky char particles during CO2 gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 787-795.

Morphology and structure evolution of flaky char particles during CO2 gasification

Funds:

the National Key Research and Development Project 2016YFB060040202

More Information
  • Corresponding author: CHEN Xue-li, E-mail:cxl@ecust.edu.cn
  • Received Date: 2018-02-12
  • Rev Recd Date: 2018-04-29
  • Available Online: 2021-01-23
  • Publish Date: 2018-07-10
  • High temperature stage microscope was applied to observe morphology evolution of flaky char particles during gasification. Raman spectroscopy was used to analyze crystalline structures of gasification semicoke. Effect of gasification temperature (1000-1200℃) and initial equivalent diameter (1.00-1.60 mm) on morphology and structure evolution were examined. The results show that particle shrinkage in later stage of gasification is more intense than that in early stage. Within tested gasification temperature, the particle ASR (area shrinkage ratio) and VSR (volumetric shrinkage ratio) decrease with increasing temperature. The initial particle size of char has a significant effect on particle shrinkage. At 1100℃ the shrinkage trend of particle marks a turning point at initial diameter of 1.30 mm. The variation of char apparent density is dominated by carbon consumption. When the carbon conversion reaches 80%, the apparent density ratio linearly decreases below 0.4. At the same gasification temperature, with increasing carbon conversion the graphitization of char reduces first and then increases, while the amorphous carbon is opposite.
  • loading
  • [1]
    AHMED I I, GUPTA A K. Particle size, porosity and temperature effects on char conversion[J]. Appl Energy, 2011, 88(12):4667-4677. doi: 10.1016/j.apenergy.2011.06.001
    [2]
    李绍锋, 吴诗勇.高温下煤焦的碳微晶及孔结构的演变行为[J].燃料化学学报, 2010, 38(5):513-517. http://www.oalib.com/paper/4272639

    LI Shao-feng, WU Shi-yong. Evolvement behavior of carbon minicrystal and pore structure of coal chars at high temperatures[J]. J Fuel Chem Technol, 2010, 38(5):513-517. http://www.oalib.com/paper/4272639
    [3]
    林善俊, 李献宇, 丁路, 周志杰, 于广锁.内蒙煤焦CO2气化过程的结构演变特性[J].燃料化学学报, 2016, 44(12):1409-1415. doi: 10.3969/j.issn.0253-2409.2016.12.001

    LIN Shan-jun, LI Xian-yu, DING Lu, ZHOU Zhi-jie, YU Guang-suo. Structure evolution characteristics of Inner Mongolia coal char during CO2 gasification[J]. J Fuel Chem Technol, 2016, 44(12):1409-1415. doi: 10.3969/j.issn.0253-2409.2016.12.001
    [4]
    DAI P, DENNIS J S, SCOTT S A. Using an experimentally-determined model of the evolution of pore structure for the gasification of chars by CO2[J]. Fuel, 2016, 171:29-43. doi: 10.1016/j.fuel.2015.12.041
    [5]
    COETZEE G H, SAKUROVS R, NEOMAGUS H W J P, MORPETH L, EVERSON R C, MATHEWS J P, BUNT J R. Pore development during gasification of South African inertinite-rich chars evaluated using small angle X-ray scattering[J]. Carbon, 2015, 95:250-260. doi: 10.1016/j.carbon.2015.08.030
    [6]
    COETZEE G H, SAKUROVS R, NEOMAGUS H W J P, MORPETH L, EVERSON R C, MATHEWS J P, BUNT J R. Particle size influence on the pore development of nanopores in coal gasification chars:from micron to millimeter particles[J]. Carbon, 2017, 112:37-46. doi: 10.1016/j.carbon.2016.10.088
    [7]
    LI S, WHITTY K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Process Technol, 2012, 95:127-136. doi: 10.1016/j.fuproc.2011.12.006
    [8]
    LI T, ZHANG L, DONG L, ZHANG S, QIU P, WANG S, LI C Z. Effects of gasification temperature and atmosphere on char structural evolution and AAEM retention during the gasification of Loy Yang brown coal[J]. Fuel Process Technol, 2017, 159:48-54. doi: 10.1016/j.fuproc.2017.01.022
    [9]
    BAI Y, WANG Y, ZHU S, LI F, XIE K. Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures[J]. Energy, 2014, 74:464-470. doi: 10.1016/j.energy.2014.07.012
    [10]
    MERMOUD F, GOLFIER F, SALVADOR S, STEENE L V, DIRION J L. Experimental and numerical study of steam gasification of a single charcoal particle[J]. Combust Flame, 2006, 145(1):59-79.
    [11]
    MOLINTAS H, GUPTA A K. Combustion of spherically shaped large wood char particles[J]. Fuel Process Technol, 2016, 148:332-340. doi: 10.1016/j.fuproc.2016.02.029
    [12]
    HAUGEN N E L, TILGHMAN M B, MITCHELL R E. The conversion mode of a porous carbon particle during oxidation and gasification[J]. Combust Flame, 2014, 161(2):612-619. doi: 10.1016/j.combustflame.2013.09.012
    [13]
    TILGHMAN M B, HAUGEN N E L, MITCHELL R E. A comprehensive char-particle gasification model adequate for entrained-flow and fluidized-bed gasifiers[J]. Energy Fuels, 2017, 31:2652-2662. doi: 10.1021/acs.energyfuels.6b03241
    [14]
    赵英杰, 陈雪莉, 陈汉鼎, 刘海峰.稻草固定床热解过程中不同赋存状态钾的迁移转化行为[J].燃料化学学报, 2014, 42(4):427-433. http://www.ccspublishing.org.cn/article/id/100033107

    ZHAO Ying-jie, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng. Transfer of potassium in different forms during pyrolysis of rice straw in a fixed bed reactor[J]. J Fuel Chem Technol, 2014, 42(4):427-433. http://www.ccspublishing.org.cn/article/id/100033107
    [15]
    SHEN Z, LIANG Q, XU J, ZHANG B, LIU H. In-situ experimental study of CO2 gasification of char particles on molten slag surface[J]. Fuel, 2015, 160:560-567. doi: 10.1016/j.fuel.2015.08.010
    [16]
    SHEN Z, LIANG Q, XU J, ZHANG B, HAN D, LIU H. In situ experimental study on the combustion characteristics of captured chars on the molten slag surface[J]. Combust Flame, 2016, 166:333-342. doi: 10.1016/j.combustflame.2016.02.002
    [17]
    SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [18]
    BOURAOUI Z, JEGUIRIM M, GUIZANI C, LIMOUSY L, DUPONT C, GADIOU R. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity[J]. Energy, 2015, 88:703-710. doi: 10.1016/j.energy.2015.05.100
    [19]
    GUIZANI C, JEGUIRIM M, GADIOU R, SANZ F J E, SALVADOR S. Biomass char gasification by H2O, CO2 and their mixture:Evolution of chemical, textural and structural properties of the chars[J]. Energy, 2016, 112:133-145. doi: 10.1016/j.energy.2016.06.065
    [20]
    ESSENHIGH R H. Influence of initial particle density on the reaction mode of porous carbon particles[J]. Combust Flame, 1994, 99(2):269-279. doi: 10.1016/0010-2180(94)90131-7
    [21]
    HURT R H, DUDEK D R, LONGWELL J P, SAROFIM A F. The phenomenon of gasification-induced carbon densification and its influence on pore structure evolution[J]. Carbon, 1988, 26(4):433-449. doi: 10.1016/0008-6223(88)90142-X
    [22]
    ESSENHIGH R H, KLIMESH H E, FÖRTSCH D. Combustion characteristics of carbon:Dependence of the zone Ⅰ-zone Ⅱ transition temperature (Tc) on particle radius[J]. Energy Fuels, 1999, 13(4):826-831. doi: 10.1021/ef980241g
    [23]
    ALVARADO P N, CADAVID F J, SANTAMARÍA A, RUIZ W. Reactivity and structural changes of coal during its combustion in a low-oxygen environment[J]. Energy Fuels, 2016, 30(11):9891-9899. doi: 10.1021/acs.energyfuels.6b01913
    [24]
    CHABALALA V P, WAGNER N, POTGIETER-VERMAAK S. Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1[J]. Fuel Process Technol, 2011, 92(4):750-756. doi: 10.1016/j.fuproc.2010.09.006
    [25]
    ZHU X, SHENG C. Influences of carbon structure on the reactivities of lignite char reacting with CO2 and NO[J]. Fuel Process Technol, 2010, 91(8):837-842. doi: 10.1016/j.fuproc.2009.10.015
    [26]
    SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
    [27]
    LIU X, ZHENG Y, LIU Z, DING H, HUANG X, ZHENG C. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy[J]. Fuel, 2015, 157:97-106. doi: 10.1016/j.fuel.2015.04.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (87) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return