Volume 44 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
Ahmed W., Ahmed Hoda, S., El-Sheshtawy H.S., Mohamed Nadia, A., Zahran Asmaa, I.. Egyptian heavy vacuum gas oil hydrotreating over Co-Mo/CNT and Co-Mo/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 853-861.
Citation: Ahmed W., Ahmed Hoda, S., El-Sheshtawy H.S., Mohamed Nadia, A., Zahran Asmaa, I.. Egyptian heavy vacuum gas oil hydrotreating over Co-Mo/CNT and Co-Mo/γ-Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 853-861.

Egyptian heavy vacuum gas oil hydrotreating over Co-Mo/CNT and Co-Mo/γ-Al2O3 catalysts

More Information
  • Corresponding author: W. Ahmed, Tel: +(202)22747847-2015, Fax: +(202)22747433, E-mail: Waelepri2@yahoo.com
  • Received Date: 2016-02-04
  • Rev Recd Date: 2016-05-22
  • Available Online: 2021-01-23
  • Publish Date: 2016-07-10
  • The catalytic activity of CoMoS/CNT towards the Egyptian heavy vacuum gas oil hydrotreating was studied. The delivered CNT was functionalized with 6 mol/L HNO3. The CNT were loaded with 12% MoO3 (by weight) and 0.7 Co/Mo atomic ratio with impregnation methods. The γ-Al2O3catalyst was also prepared by impregnation method to compare both catalysts activities. The analysis tools such XRD, Raman spectroscopy, TEM, and BET were used to characterize the catalysts. The autoclave reactor was used to operate the hydrotreating experiments. The hydrotreating reactions were tested at various operating conditions of temperature 325-375 ℃, pressure 2-6 MPa, time 2-6 h, and catalyst/oil ratio (by weight) of 1:75, 1:33 and 1:10. The results revealed that the CoMoS/CNT was highly efficient for the hydrotreating more than the CoMoS/γ-Al2O3. Also, the hydrodesulfurization (HDS) increased with increasing catalyst/oil ratio. Additionally, results showed that the optimum condition was temperature 350 ℃, pressure 4 MPa, catalyst/oil ratio of 1:75 for 2 h. Furthermore, even at low CoMoS/CNT catalyst/oil ratio of 1:75, an acceptable HDS of 77.1% was achieved.
  • loading
  • [1]
    TOPSФE H, CLAUSEN B S. Importance of Co-Mo-S type structures in hydrodesulfurization[J]. Catal Rev Sci Eng, 1984, 26(3/4): 395-420. https://www.researchgate.net/publication/233078708_Importance_of_Co-Mo-S_Type_Structures_in_Hydrodesulfurization
    [2]
    PRINS R, DE BEER V H J, SOMORJAI G A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts[J].Catal Rev Sci Eng, 1989, 31(1/2): 1-41. https://www.researchgate.net/publication/239246431_Structure_and_Function_of_the_Catalyst_and_Promoter_in_Co-Mo_Hydrodesulfurization_Catalysts
    [3]
    MEDICI L, PRINS R. The influence of chelating ligands on the sulfidation of Ni and Mo in NiMo/SiO2 hydrotreating catalysts[J]. J Catal, 1996, 163(1): 38-49. doi: 10.1006/jcat.1996.0303
    [4]
    SHIMIZU T, HIROSHIMA K, HONMA T, MOCHIZUKI T, YAMADA M. Highly active hydrotreatment catalysts prepared with chelating agents[J].Catal today, 1998, 45(1/4): 271-276. https://www.researchgate.net/publication/237883166_Highly_active_hydrotreatment_catalysts_prepared_with_chelating_agents
    [5]
    VAN LOOIJ F, VAN DER LAAN P, STORK W H J, DICAMILLO D J, SWAIN J. Key parameters in deep hydrodesulfurization of diesel fuel[J].Appl Catal A: Gen, 1998, 170(1): 1-12. doi: 10.1016/S0926-860X(98)00028-3
    [6]
    SHIMADA H, SATO T, YOSHIMURA Y, HIRAISHI J, NISHIJIMA A. Support effect on the catalytic activity and properties of sulfided molybdenum catalysts[J].J Catal, 1988, 110(2): 275-284. doi: 10.1016/0021-9517(88)90319-3
    [7]
    VISHWAKARMA S K. Sonochemical and impregnated Co-W/γ-Al2O3 catalysts: Performances and kinetic studies on hydrotreatment of light gas oil[D].Saskatoon University of Saskatchewan, 2007.
    [8]
    TOPSФE H, CLAUSEN B S. Active sites and support effects in hydrodesulfurization catalysts[J].Appl Catal, 1986, 25(1/2): 273-293. https://www.researchgate.net/publication/232384475_Active_Sites_and_Support_Effects_in_Hydrodesulfurization_Catalysts
    [9]
    ESWARAMOORTHI I, SUNDARAMURTHY V, DAS N, DALAI A K, ADJAYE J. Application of multi-walled carbon nanotubes as efficient support to NiMo hydrotreating catalyst[J].Appl Catal A: Gen, 2008, 339(2): 187-195. doi: 10.1016/j.apcata.2008.01.021
    [10]
    SIGURDSON S, SUNDARAMURTHY V, DALAI A K, ADJAYE J. Effect of anodic alumina pore diameter variation on template-initiated synthesis of carbon nanotube catalyst supports[J].JMol Catal A: Chem, 2009, 306: 23-32. doi: 10.1016/j.molcata.2009.02.016
    [11]
    DHAR G M, SRINIVAS B N, RANA M S, KUMAR M, MAITY S K. Mixed oxide supported hydrodesulfurization catalysts-A review[J]. Catal Today, 2003, 86(1/4): 45-60. http://www.academia.edu/10095367/Mixed_oxide_supported_hydrodesulfurization_catalysts_a_review
    [12]
    WANG A, WANG Y, KABE T, CHEN Y, ISHIHARA A, QIAN W. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts: I. Sulfided Co-Mo catalysts[J]. J Catal, 2001, 199(1): 19-29. doi: 10.1006/jcat.2000.3148
    [13]
    MAITY S K, RANA M S, BEJ S K, ANCHEYTA-JUAREZ J, DHAR G M, RAO T S R P. Studies on physico-chemical characterization and catalysis on high surface area titania supported molybdenum hydrotreating catalysts[J]. Appl CatalA: Gen, 2001, 205(1/2): 215-225. https://www.researchgate.net/profile/Mohan_Rana/publication/223324302_Studies_on_Physico-Chemical_Characterization_and_Catalysis_on_High_Surface_Area_Titania_Supported_Molybdenum_Hydrotreating_Catalysts/links/00b49526f435e3ac3a000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [14]
    VRADMAN L, LANDAU M V, HERSKOWITZ M, EZERSKY V, TALIANKER M, NIKITENKO S, KOLTYPIN Y, GEDANKEN A. High loading of short WS 2 slabs inside SBA-15: Promotion with nickel and performance in hydrodesulfurization and hydrogenation[J]. J Catal, 2003, 213(2): 163-175. doi: 10.1016/S0021-9517(02)00012-X
    [15]
    POUR A N, RASHIDI A M, JOZANI K J, MOHAJERI A, KHORAMI P. Support effects on the chemical property and catalytic activity of Co-Mo HDS catalyst in sulfur recovery[J]. J Nat Gas Chem, 2010, 19(1): 91-95. doi: 10.1016/S1003-9953(09)60032-3
    [16]
    SERP P, CORRIAS M, KALCK P. Carbon nanotubes and nanofibers in catalysis[J]. Appl Catal A: Gen, 2003, 253: 337-358. doi: 10.1016/S0926-860X(03)00549-0
    [17]
    VAN STEEN E, PRINSLOO F F. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts[J].Catal Today, 2002, 71(3/4): 327-334. http://en.journals.sid.ir/Reference.aspx?ID=383523
    [18]
    AUER E, FREUND A, PIETSCH J, TACKE T. Carbons as supports for industrial precious metal catalysts[J]. Appl Catal A: Gen, 1998, 173(2): 259-271. doi: 10.1016/S0926-860X(98)00184-7
    [19]
    SHANG H Y, LIU C G, XU Y Q, ZHAO H J, SONG H H. Effect of the surface modification of multi-walled carbon nanotubes (MWCNTs) on hydrodesulfurization activity of Co-Mo/MWCNTs catalysts[J]. New Carbon Mater, 2004, 19(2): 131-136. https://www.researchgate.net/publication/283863470_Effect_of_the_surface_modification_of_multi-walled_carbon_nanotubes_MWCNTs_on_hydrodesulfurization_activity_of_Co-MoMWCNTs_catalysts
    [20]
    KYOTANI T, NAKAZAKI S, XU W-H, TOMITA A. Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation[J]. Carbon, 2001, 39(5): 782-785. doi: 10.1016/S0008-6223(01)00013-6
    [21]
    DONG K, ZHANG S, WANG D, YAO X. Hydrogen bonds in imidazolium ionic liquids[J]. J Phys Chem A, 2006, 110(31): 9775-9782. doi: 10.1021/jp054054c
    [22]
    SHANG H, LIU C, XU Y, QIU J, WEI F. States of carbon nanotube supported Mo-based HDS catalysts[J]. Fuel Process Technol, 2007, 88(2): 117-123. doi: 10.1016/j.fuproc.2004.08.010
    [23]
    AWADALLAH A E, ABOUL-ENEIN A A, EL-DESOUKI D S, ABOUL-GHEIT A K. Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group Ⅷ catalysts[J]. ApplSurfSci, 2014, 296: 100-107.
    [24]
    SUNDARAMURTHY V, DALAI A K, ADJAYE J. Effect of EDTA on hydrotreating activity of CoMo/γ-Al2O3 catalyst[J]. CatalLett, 2005, 102(3): 299-306.
    [25]
    HOGG J C, CHU F, UTOKAPARCH S, WOODS R, ELLIOTT W M, BUZATU L, CHERNIACK R M, ROGERS R M, SCIURBA F C, COXSON H O, PARP D. The nature of small-airway obstruction in chronic obstructive pulmonary disease [J].N Engl J Med, 2004, 350: 2645-2653. doi: 10.1056/NEJMoa032158
    [26]
    SHIGAPOV A N, GRAHAM G W, MCCABE R W, PECK M P, PLUMMER H K. The preparation of high-surface-area cordierite monolith by acid treatment[J]. Appl Catal A: Gen, 1999, 182(1): 137-146. doi: 10.1016/S0926-860X(99)00003-4
    [27]
    TAN Z L, XIAO H N, ZHANG R D, ZHANG Z S, KALIAGUINE S. Potential to use mesoporous carbon as catalyst support for hydrodesulfurization[J]. New Carbon Mater, 2009, 24(4): 333-343. doi: 10.1016/S1872-5805(08)60056-6
    [28]
    ZHANG Y, ZHANG H B, LIN G D, CHEN P, YUAN Y Z, TSAI K R. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst[J]. Appl Catal A: Gen, 1999, 187(2): 213-224. doi: 10.1016/S0926-860X(99)00229-X
    [29]
    DUJARDIN E, EBBESEN T W, HIURA H, TANIGAKI K. Capillarity and wetting of carbon nanotubes[J]. Science, 1994, 265(5180): 1850-1852. doi: 10.1126/science.265.5180.1850
    [30]
    DANDEKAR A, BAKER R T K, VANNICE M A. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS[J]. Carbon, 1998, 36(12): 1821-1831. doi: 10.1016/S0008-6223(98)00154-7
    [31]
    KARIMI A, NASERNEJAD B, RASHIDI A M. Synthesis and characterization of multiwall carbon nanotubes/alumina nanohybrid-supported cobalt catalyst in Fischer-Tropsch synthesis[J]. J Energy Chem, 2013, 22(4): 582-590. doi: 10.1016/S2095-4956(13)60076-5
    [32]
    TRÉPANIER M, TAVASOLI A, DALAI AK, ABATZOGLOU N. Fischer-Tropsch synthesis over carbon nanotubes supported cobalt catalysts in a fixed bed reactor: Influence of acid treatment[J]. Fuel Process Technol, 2009, 90(3): 367-374. doi: 10.1016/j.fuproc.2008.10.012
    [33]
    KARIMI A, NASERNEJAD B, RASHIDI A M, TAVASOLI A, POURKHALIL M. Functional group effect on carbon nanotube (CNT)-supported cobalt catalysts in Fischer-Tropsch synthesis activity, selectivity and stability[J]. Fuel, 2014, 117: 1045-1051. doi: 10.1016/j.fuel.2013.10.014
    [34]
    ABBASLOU R M M, TAVASSOLI A, SOLTAN J, DALAI A K. Iron catalysts supported on carbon nanotubes for Fischerâ Tropsch synthesis: Effect of catalytic site position[J]. Appl Catal A: Gen, 2009, 367(1/2): 47-52. https://www.researchgate.net/publication/229406473_Iron_catalysts_supported_on_carbon_nanotubes_for_Fischer-Tropsch_synthesis_Effect_of_catalytic_site_position
    [35]
    DRESSELHAUS M S, DRESSELHAUS G, JORIO A, SOUZA FILHO A G, SAITO R. Raman spectroscopy on isolated single wall carbon nanotubes[J]. Carbon, 2002, 40(12): 2043-2061. doi: 10.1016/S0008-6223(02)00066-0
    [36]
    LI Q, YAN H, ZHANG J, LIU Z. Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition[J]. Carbon, 2004, 42(4): 829-835. doi: 10.1016/j.carbon.2004.01.070
    [37]
    KOHLER S D, EKERDT J G, KIM D S, WACHS I E. Relationship between structure and point of zero surface charge for molybdenum and tungsten oxides supported on alumina[J]. Catal Lett, 1992, 16(3): 231-239. doi: 10.1007/BF00764335
    [38]
    JEZIOROWSKI H, KNOZINGER H, GRANGE P, GAJARDO P. Raman spectra of cobalt molybdenum oxide supported on silica[J]. J Phys Chem, 1980, 84: 1825-1829. doi: 10.1021/j100451a017
    [39]
    GARY J H, HANDWERK G E, KAISER M J. Petroleum refining: Technology and economics[C]. Boca Raton: CRC Press, 2007.
    [40]
    BARTHOLOMEW C H. Catalyst deactivation in hydrotreating of residua: A review[C]. New York: Marcel Dekker, 1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return