Volume 47 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
ZHOU Wen-jun, SHEN Bo-xiong, ZHANG Qin, WANG Xin-yi, LU Feng-ju. Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 249-256.
Citation: ZHOU Wen-jun, SHEN Bo-xiong, ZHANG Qin, WANG Xin-yi, LU Feng-ju. Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 249-256.

Preparation of the Ti3+/TiO2 supported CuO catalyst and its photocatalytic performance in the degradation of toluene

Funds:

the National Important Research and Development Plan 2018YFB0605101

Key Project Natural Science Foundation of Tianjin 18JCZDJC39800

the Project of Science and Technology of Tianjin 18ZXSZSF00040

Tianjin Science Popularization Project 18KPXMSF00080

Tangshan Science and Technology Project 18130211A

More Information
  • Corresponding author: SHEN Bo-xiong, E-mail: shenboxiong0722@sina.com
  • Received Date: 2018-09-13
  • Rev Recd Date: 2018-10-30
  • Available Online: 2021-01-23
  • Publish Date: 2019-02-10
  • The CuO-Ti3+/TiO2(Cu-TiMB) pholocatalyst was prepared by reducing TiO2 loaded with Cu-BTC (BTC, 1, 3, 5-benzoic acid) precursor; its photocatalytic performance in the removal of gaseous toluene was investigated. The result indicated that the toluene removal efficiency of CuO-Ti3+/TiO2(Cu-TiMB) by visible irradiation was 2.68 time higher than that of CuO-TiO2(Cu-TiD) prepared by impregnation. The CuO-Ti3+/TiO2(Cu-TiMB) catalyst shows relatively high surface area (147 m2/g), small particle size (0.45 μm), porous structure and high CuO dispersion; Ti3+ may provide a large number of oxygen vacancies, which can significantly enhance the photocatalytic response at 400-800 nm. In addition, Cu2+ and Cu+ may form heterogeneous structure with Ti3+, which can further increase the number of oxygen vacancies and delay the electron-hole pairs (e--h+) recombination time. The oxygen vacancies are effective in enhancing the ability for capturing adsorption oxygen, promoting the chemisorption ability by changing the valence state of metal oxides, and then improving the photocatalytic performance.
  • loading
  • [1]
    YANG C, QIAN H, LI X, CHENG Y, HE H, ZENG G, XI J. Simultaneous removal of multicomponent VOCs in Biofilters[J]. Trends Biotechnol, 2018, 36(7):673-685. https://www.sciencedirect.com/science/article/pii/S0167779918300581
    [2]
    GREGIS G, SCHAEFER S, SANCHEZ J B, FIERRO V, BERGER F, BEZVERKHYY I, WEBER G, BELLAT J P, CELZARD A. Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis[J]. Mater Chem Phys, 2017, 192:374-382.
    [3]
    MAZIERSKI P, MIKOLAJCZYK A, BAJOROWICZ B, MALANKOWSKA A, ZALESKA-MEDYNSKA A, NADOLNA J. The role of lanthanides in TiO2-based photocatalysis:A review[J]. Appl Catal B:Environ, 2018, 233:301-317. https://www.sciencedirect.com/science/article/pii/S0926337318303485
    [4]
    TAN H, ZHAO Z, NIU M, MAO C, CAO D, CHENG D, FENG P, SUN Z. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity[J]. Nanoscale, 2014, 6(17):10216-10223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db321b60c46f62d30c998e70ccfa3d1a
    [5]
    HU Y, DAI L, LIU D, DU W, WANG Y. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs)[J]. Renewable Sustainable Energy Rev, 2018, 91:793-801. doi: 10.1016/j.rser.2018.04.103
    [6]
    LIU H, ZHANG S, LIU Y, YANG Z, FENG X, LU X, HUO F. Well-dispersed and size-controlled supported metal oxide nanoparticles derived from MOF composites and further application in catalysis[J]. Small, 2015, 11(26):3130-3134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26de4fd065c697d88cdb51199544485d
    [7]
    HAIDER A J, AL ANBARI R H, KADHIM G R, SALAME C T. Exploring potential Environmental applications of TiO2 nanoparticles[J]. Energy Procedia, 2017, 119:332-345. https://www.sciencedirect.com/science/article/pii/S1876610217326711
    [8]
    李远洋, 晏良宏, 江波.一种简单的提高无定形TiO2光催化活性的方法及其在增透膜中的应用[J].无机化学学报, 2018, 34(9):91701-91709. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201809014

    LI Yuan-yang, YAN Liang-hong, JIANG Bo. Simple way to enhance the photocatalytic activity and application in antireflective coatings for amorphous TiO2[J]. Chin J Inorg Chem, 2018, 34(9):91701-91709. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201809014
    [9]
    RAZALI M H, YUSOFF M. Highly efficient CuO loaded TiO2 nanotube photocatalyst for CO2 photoconversion[J]. Mater Lett, 2018, 221:168-171. https://www.sciencedirect.com/science/article/abs/pii/S0167577X18304646
    [10]
    KAUR R, KAUR A, UMAR A, ANDERSON W A, KANSAL S K. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC:Synthesis, properties and enhanced absorption properties[J]. Mater Res Bull, 2019, 109:124-133. https://www.sciencedirect.com/science/article/pii/S0025540818311255
    [11]
    CHAUDHARY R, JUNEJA H, PAGADALA R, GANDHARE N, GHARPURE M. Synthesis, characterisation and thermal degradation behaviour of some coordination polymers by using TG-DTG and DTA techniques[J]. J Saudi Chem Soc, 2015, 19(4):442-453. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004563704
    [12]
    COLÓN G, MAICU M, HIDALGO M C, NAVÍO J A. Cu-doped TiO2 systems with improved photocatalytic activity[J]. Appl Catal B:Environ, 2006, 67(1/2):41-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1eb37df1109c77002ca048b002ee4375
    [13]
    朱鹏飞, 刘梅, 牛笛, 王斯. Cu-Fe-TiO2膨润土复合光催化剂的表征及性能[J].光谱实验室, 2013, 30(3):1277-1281. doi: 10.3969/j.issn.1004-8138.2013.03.056

    ZHU Peng-fei, LIU Mei, NIU Di, WANG Si. Characterization and property of Cu-Fe-TiO2/bentonite composite photocatalyst[J]. Chin J Spectr Lab, 2013, 30(3):1277-1281. doi: 10.3969/j.issn.1004-8138.2013.03.056
    [14]
    MARX S, KLEIST W, BAIKER A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J]. J Catal, 2011, 281(1):76-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2838e6714f3af00654781940d1bfebf
    [15]
    LIU S, YUAN S, ZHANG Q, XU B, WANG C, HANG M, OHNO T. Fabrication and characterization of black TiO2 with different Ti3+ concentrations under atmospheric conditions[J]. J Catal, 2018, 366:282-288. doi: 10.1016/j.jcat.2018.07.018
    [16]
    POZAN G S, ISLEYEN M, GOKCEN S. Transition metal coated TiO2 nanoparticles:Synthesis, characterization and their photocatalytic activity[J]. Appl Catal B:Environ, 2013, 140-141:537-545. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJ0227193/
    [17]
    WANG B, SUN Q, LIU S, LI Y. Synergetic catalysis of CuO and graphene additives on TiO2 for photocatalytic water splitting[J]. Int J Hydrogen Energy, 2013, 38(18):7232-7240.
    [18]
    WANG X, LI Y, LIU X, GAO S, HUANG B, DAI Y. Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity[J]. Chin J Catal, 2015, 36(3):389-399. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201503021
    [19]
    BAI Y S, CHEN S, LU L D, BAO J C. Study of degradation of photocatalytic methyl orange on nano study of degradation of photocatalytic methyl orange on nano NdxCo2-xZr2O7[J]. Adv Mater Res, 2012, 602-604:169-173.
    [20]
    PENG B, FENG C, LIU S, ZHANG R. Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process[J]. Catal Today, 2018, 314:122-128. https://www.sciencedirect.com/science/article/pii/S0920586117307411
    [21]
    YU X, FAN X, AN L, LI Z, LIU J. Facile synthesis of Ti3+-TiO2 mesocrystals for efficient visible-light photocatalysis[J]. J Phys Chem Solids, 2018, 119:94-99. doi: 10.1016/j.jpcs.2018.03.024
    [22]
    LEE J, LI Z, ZHU L, XIE S, CUI X. Ti3+ self-doped TiO2 via facile catalytic reduction over Al(acac)3 with enhanced photoelectrochemical and photocatalytic activities[J]. Appl Catal B:Environl, 2018, 224:715-724. doi: 10.1016/j.apcatb.2017.10.057
    [23]
    YIN H, ZHU J, CHEN J, GONG J, NIE Q. MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor[J]. Mater Lett, 2018, 221:267-270. https://www.sciencedirect.com/science/article/abs/pii/S0167577X18305275
    [24]
    ZENG Y, WANG T, ZHANG S, WANG Y, ZHONG Q. Sol-gel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO[J]. Appl Surf Sci, 2017, 411:227-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=42d6abaf1048b59d535fd5de94c09f24
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return