Volume 44 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
CAO Yue-ling, WANG Jun-wei, KANG Mao-qing, ZHU Yu-lei. Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 845-852.
Citation: CAO Yue-ling, WANG Jun-wei, KANG Mao-qing, ZHU Yu-lei. Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 845-852.

Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts

Funds:

The projeet was supporred by the Major State Basic Research Development Program of China 2012CB215305

More Information
  • Corresponding author: WANG Jun-wei, Tel: +86 0351-4069680, Fax: +86351-4069680, E-mail: wangjw@sxicc.ac.cn
  • Received Date: 2015-12-28
  • Rev Recd Date: 2016-04-28
  • Available Online: 2021-01-23
  • Publish Date: 2016-07-10
  • Glucose and cellobiose were used as model compounds to investigate the effect of retro-aldol condensation and hydrogenation rates on the product distribution of cellulose conversion. It was shown that the product distribution obtained over the physical mixture of Ni/SBA-15 and WO3/SBA-15 in the glucose and cellobiose conversions were different from that attained on the Ni-WO3/SBA-15 prepared by the co-impregnation method. The ethylene glycol (EG) yield depended on the structures of tungstic compounds, and it increased in the order of WO3 < WO3/SBA-15 < (NH4)6W7O24·6H2O (AMT), while the particle sizes of them decreased in such an order. Regardless of the types of tungstic compounds, the EG yield obtained in the glucose conversion is lower than that attained in the cellobiose conversion at the same amount of catalyst.
  • loading
  • [1]
    HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098. doi: 10.1021/cr068360d
    [2]
    CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502. doi: 10.1021/cr050989d
    [3]
    ONDA A, OCHI T, YANAGISAWA, K. Selective hydrolysis of cellulose into glucose over solid acid catalysts[J]. Green Chem, 2008, 10(10): 1033-1037. doi: 10.1039/b808471h
    [4]
    FUKUOKA A, DHEPE P A. Catalytic conversion of cellulose into sugar alcohols[J]. Angew Chem Int Ed, 2006, 45(31): 5161-5163. doi: 10.1002/(ISSN)1521-3773
    [5]
    JI N, ZHANG T, ZHENG M Y, WANG A Q, WANG H, WANG X D, CHEN J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem, 2008, 120(44): 8638-8641. doi: 10.1002/ange.v120:44
    [6]
    SU Y, BROWN H M, HUANG X W, ZHOU X D, AMONETTE J E, ZHANG Z C. Single-step conversion of cellulose to 5-hydroxymethlfurfural (HMF), a versatile platform chemical[J]. Appl Catal A: Gen, 2009, 361(1/2): 117-122. https://www.researchgate.net/publication/239153841_Single-Step_Conversion_of_Cellulose_to_5-Hydroxymethylfurfural_%28HMF%29_a_Versatile_Platform_Chemical
    [7]
    KUO I J, SUZUKI N, YAMAUCHI Y, WU K C. W. Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems[J]. RSC Adv, 2013, 3(6): 2028-2034. doi: 10.1039/C2RA21805D
    [8]
    ZHANG J Z, LIU X, SUN M, MA X H, HAN Y. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium[J]. ACS Catal, 2012, 2(8): 1698-1702. doi: 10.1021/cs300342k
    [9]
    AN D L, YE A H, DENG W P, ZHANG Q H, WANG Y. Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles[J]. Chem Eur J, 2012, 18(10): 2938-2947. doi: 10.1002/chem.201103262
    [10]
    SERRANO-RUIZ J C, BRADEN D J, WEST R M, DUMESIC J A. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Appl Catal B: Environ, 2010, 100(1/2): 184-189. https://www.researchgate.net/publication/239154326_Conversion_of_cellulose_to_hydrocarbon_fuels_by_progressive_removal_of_oxygen
    [11]
    LIU Y, CHEN L G, WANG T J, ZHANG X H, LONG J X, ZHANG Q, MA L L. High yield of renewable hexanes by direct hydrolysis-hydrodeoxygenation of cellulose in an aqueous phase catalytic system[J]. RSC Adv, 2015, 5(15): 11649-11657. doi: 10.1039/C4RA14304C
    [12]
    REZAEI P S, SHAFAGHAT H, DAUD W M A W. Suppression of coke formation and enhancement of aromatic hydrocarbon production in catalytic fast pyrolysis of cellulose over different zeolites: Effects of pore structure and acidity[J]. RSC Adv, 2015, 5(80): 65408-65414. doi: 10.1039/C5RA11332F
    [13]
    YUE H R, ZHAO Y J, MA X B, GONG J L. Ethylene glycol: Properties, synthesis, and applications[J]. Chem Soc Rev, 2012, 41(11): 4218-4244. doi: 10.1039/c2cs15359a
    [14]
    ZHANG Y H, WANG A Q, ZHANG T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem Commun, 2010, 46(6): 862-864. doi: 10.1039/B919182H
    [15]
    ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1): 63-66. doi: 10.1002/cssc.v3:1
    [16]
    BAEK I G, YOU S J, PARK E D. Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J]. Bioresour Technol, 2012, 114: 684-690. doi: 10.1016/j.biortech.2012.03.059
    [17]
    CAO Y L, WANG J W, LI Q F, YIN N, LIU Z M, KANG M Q, ZHU Y L. Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts[J]. J Fuel Chem Technol, 2013, 41(8): 943-949. doi: 10.1016/S1872-5813(13)60041-9
    [18]
    CAO Y L, WANG J W, KANG M Q, ZHU Y L. Efficient synthesis of ethylene glycol from cellulose over Ni-WO3/SBA-15 catalysts[J]. J Mole Catal A: Gen, 2014, 381: 46-53. doi: 10.1016/j.molcata.2013.10.002
    [19]
    CAO Y L, WANG J W, KANG M Q, ZHU Y L. Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni-WO3/SBA-15 catalysts[J]. RSC Adv, 2015, 5(110): 90904-90912. doi: 10.1039/C5RA15400F
    [20]
    LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angew Chem, 2012, 124(13): 3303-3307. doi: 10.1002/ange.v124.13
    [21]
    TAI Z J, ZHANG J Y, WANG A Q, ZHENG M Y, ZHANG T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem Commun, 2012, 48(56): 7052-7054. doi: 10.1039/c2cc32305b
    [22]
    ZHAO G H, ZHENG M Y, ZHANG J Y, WANG A Q, ZHANG T. Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system[J]. Ind Eng Chem Res, 2013, 52(28): 9566-9572. doi: 10.1021/ie400989a
    [23]
    ZHANG J Y, HOU B L, WANG A Q, LI Z L, WANG H, ZHANG T. Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT[J]. AIChE J, 2014, 61(1): 224-238. http://or.nsfc.gov.cn/handle/00001903-5/195665
    [24]
    ZHANG J Y, YANG X F, HOU B L, WANG A Q, LI Z L, WANG H, ZHANG T. Comparison of cellobiose and glucose transformation to ethylene glycol[J]. Chin J Catal, 2014, 35(11): 1811-1817. doi: 10.1016/S1872-2067(14)60151-0
    [25]
    ZHANG J Y, HOU B L, WANG X F, LI Z L, WANG A Q, ZHANG T. Inhibiting effect of tungstic compounds on glucose hydrogenation over Ru/C catalyst[J]. J Energ Chem, 2015, 24(1): 9-14. doi: 10.1016/S2095-4956(15)60278-9
    [26]
    WANG A Q, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc Chem Res, 2013, 46(7): 1377-1386. doi: 10.1021/ar3002156
    [27]
    LUO C, WANG S, LIU H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angew Chem Int Eng, 2007, 46(40): 7636-7639. doi: 10.1002/(ISSN)1521-3773
    [28]
    RINALDI R, SCHÜTH F. Design of solid catalysts for the conversion of biomass[J]. Energy Environ Sci, 2009, 2(6): 610-626. doi: 10.1039/b902668a
    [29]
    TAI Z J, ZHANG J Y, WANG A Q, PANG J F, ZHENG M Y, ZHANG T. Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of Raney Ni and tungstic acid[J]. Chem Sus Chem, 2013, 6(4): 652-658. doi: 10.1002/cssc.201200842
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (128) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return