Volume 44 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
SHI He-xiang, LI Zhi-kai, LIU Ke-feng, XIAO Hai-cheng, KONG Fan-hua, ZHANG Juan, CHEN Jian-gang. Enhanced formation of α-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 822-829.
Citation: SHI He-xiang, LI Zhi-kai, LIU Ke-feng, XIAO Hai-cheng, KONG Fan-hua, ZHANG Juan, CHEN Jian-gang. Enhanced formation of α-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 822-829.

Enhanced formation of α-olefins by the pulse process between Fischer-Tropsch synthesis and N2 purging

Funds:

The project was supported by the National Natural Science Foundation of China 21373254

The project was supported by the National Natural Science Foundation of China 21503256

PetroChina PRIKY14006

PetroChina PRIKY15038

PetroChina PRIKY15039

PetroChina PRIKY15042

More Information
  • Corresponding author: CHEN Jian-gang, Tel: +86 0351-4040290, E-mail: chenjg@sxicc.ac.cn
  • Received Date: 2016-03-03
  • Rev Recd Date: 2016-04-06
  • Available Online: 2021-01-23
  • Publish Date: 2016-07-10
  • The Fischer-Tropsch synthesis has offered an alternative way to convert coal and biomass into chemicals such as α-olefins via sygas comprised of H2 and CO. A pulse process switching between Fischer-Tropsch synthesis and N2 purging was carried out when the Fischer-Tropsch synthesis became stable in the fixed bed reactor. The activity and selectivity over Fe-Co catalyst for α-olefins in Fischer-Tropsch synthesis reaction were measured under the normal conditions of 2.0 MPa, 497 K, 2 000 h-1 and H2/CO volume ratio of 2.0. It was found that the olefin to paraffin ratio of C3 for Fe-Co catalyst purged at 517 K and 0.2 MPa was almost nine times higher than that of the fresh one without purging under the same reaction conditions, and the CH4 selectivity and CO conversion decreased after purging. Two possible reasons were proposed to explain these phenomena. Moreover, a batch experiment by the pulse process in fixed bed reactor was performed. Notably, a high olefins yield was obtained via the pulse process during the Fischer-Tropsch synthesis.
  • loading
  • [1]
    [2]
    ZHENG S, SUN J, SONG D, CHEN Z, CHEN J. The facile fabrication of magnetite nanoparticles and their enhanced catalytic performance in Fischer-Tropsch synthesis[J]. Chem Commun, 2015, 51(55): 11123-11125. doi: 10.1039/C5CC03336E
    [3]
    DUPAIN X, KRUL R A, SCHAVERIEN C J, MAKKEE M, MOULIJN J A. Production of clean transportation fuels and lower olefins from Fischer-Tropsch synthesis waxes under fluid catalytic cracking conditions[J]. Appl Catal B: Environ, 2006, 63(3/4): 277-295. https://www.researchgate.net/publication/223320482_Production_of_clean_transportation_fuels_and_lower_olefins_from_Fischer-Tropsch_Synthesis_waxes_under_fluid_catalytic_cracking_conditions_The_potential_of_highly_paraffinic_feedstocks_for_FCC
    [4]
    CAVELL R G, CREED B, GELMINI L, LAW D J, MCDONALD R, SANGER A R, SOMOGYVARI A. Design, syntheses and application of new phosphine and dithiophosphinate complexes of nickel: Catalyst precursors for the oligomerization of ethylene[J]. Inorg Chem, 1998, 37(4): 757-763. doi: 10.1021/ic970798w
    [5]
    JANARDANARAO M. Direct catalytic conversion of synthesis gas to lower olefins[J]. Ind Eng Chem Res, 1990, 29(9): 1735-1753. doi: 10.1021/ie00105a001
    [6]
    LIU Z, SUN C, WANG G, WANG Q, CAI G. New progress in R & D of lower olefin synthesis[J]. Fuel Process Technol, 2000, 62(2/3): 161-172.
    [7]
    PARK J, LEE Y, JUN K, BAE J W, VISWANADHAM N, KIM Y H. Direct conversion of synthesis gas to light olefins using dual bed reactor[J]. J Ind Eng Chem, 2009, 15(6): 847-853. doi: 10.1016/j.jiec.2009.09.011
    [8]
    TORRES GALÜIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. doi: 10.1126/science.1215614
    [9]
    MA C, CHEN J. Effect of hydrothermal treatment on precipitated iron catalyst for Fischer-Tropsch Synthesis[J]. Catal Lett, 2015, 145(2):702-711. doi: 10.1007/s10562-014-1457-4
    [10]
    SUN J, ZHENG S, ZHANG K, SONG D, LIU Y, SUN X, CHEN J. The crystal plane effect of CoFe nanocrystals on Fischer-Tropsch synthesis[J]. J Mater Chem A, 2014, 2(32): 13116-13122. doi: 10.1039/C4TA02425G
    [11]
    JOYNER R W. The mechanism of chain growth in the Fischer-Tropsch hydrocarbon synthesis[J]. Catal Lett, 1988, 1(10): 307-310. doi: 10.1007/BF00774872
    [12]
    MADON R J, IGLESIA E. The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium catalysts[J]. J Catal, 1993, 139(2): 576-590. doi: 10.1006/jcat.1993.1051
    [13]
    LINGHU W, LIU X, LI X, FUJIMOTO K. Selective synthesis of higher linear alpha-olefins over cobalt Fischer-Tropsch catalyst[J]. Catal Lett, 2006, 108(1/2): 11-13. https://www.researchgate.net/publication/244494461_Selective_Synthesis_of_Higher_Linear_a_-olefins_over_Cobalt_Fischer-Tropsch_Catalyst
    [14]
    JANANI H, REZVANI A R, GRIVANI G H, MIRZAEI A A. Fischer-Tropsch synthesis of hydrocarbons over new Co/Ce bimetallic catalysts derived from dipicolinate and carbonyl metal complexes[J]. J Inorg Organomet Polym, 2015, 25(5): 1169-1182. doi: 10.1007/s10904-015-0225-2
    [15]
    RAMASAMY K K, GRAY M, JOB H, WANG Y. Direct syngas hydrogenation over a Co-Ni bimetallic catalyst: Process parameter optimization[J]. Chem Eng Sci, 2015, 135: 266-273. doi: 10.1016/j.ces.2015.03.064
    [16]
    SHIMURA K, MIYAZAWA T, HANAOKA T, HIRATA S. Fischer-Tropsch synthesis over alumina supported bimetallic Co-Ni catalyst: Effect of impregnation sequence and solution[J]. J Mol Catal A: Chem, 2015, 407: 15-24. doi: 10.1016/j.molcata.2015.06.013
    [17]
    FARZANFAR J, REZVANI A R. Inorganic complex precursor route for preparation of high-temperature Fischer-Tropsch synthesis Ni-Co nanocatalysts[J]. Res Chem Intermed, 2015, 41(11): 8975-9001. doi: 10.1007/s11164-015-1942-4
    [18]
    CALDERONE V R, SHIJU N R, FERRE D C, ROTHENBERGA G. Bimetallic catalysts for the Fischer-Tropsch reaction[J]. Green Chem, 2011, 13(8): 1950-1959. doi: 10.1039/c0gc00919a
    [19]
    KEYSER M J, EVERSON R C, ESPINOZA R L. Fischer-Tropsch studies with cobalt-manganese oxide catalysts: Synthesis performance in a fixed bed reactor[J]. Appl Catal A: Gen, 1998, 171(1): 99-107. doi: 10.1016/S0926-860X(98)00083-0
    [20]
    DUVENHAGE D J, COVILLE N J. Fe:Co/TiO2 bimetallic catalysts for the Fischer-Tropsch reaction I. Characterization and reactor studies[J]. Appl Catal A: Gen, 1997, 153(1/2): 43-67.
    [21]
    DUVENHAGE D J, COVILLE N J. Fe: Co/TiO2 bimetallic catalysts for the Fischer-Tropsch reaction: part 2. the effect of calcination and reduction temperature[J]. Appl Catal A: Gen, 2002, 233(1/2): 63-75.
    [22]
    TIHAY F, ROGER A C, KIENNEMANN A, POURROY G. Fe-Co based metal/spinel to produce light olefins from syngas[J]. Catal Today, 2000, 58(4): 263-269. doi: 10.1016/S0920-5861(00)00260-1
    [23]
    MIRZAEI A A, HABIBPOUR R, KASHI E. Preparation and optimization of mixed iron cobalt oxide catalysts for conversion of synthesis gas to light olefins[J]. Appl Catal A: Gen, 2005, 296(2): 222-231. doi: 10.1016/j.apcata.2005.08.033
    [24]
    MA X, SUN Q, YING W, FANG D. Effects of the ratio of Fe to Co over Fe-Co/SiO2 bimetallic catalysts on their catalytic performance for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2009, 18(2): 232-236. doi: 10.1016/S1003-9953(08)60102-4
    [25]
    DE LA PENA O'SHEA V A, ÁLÜAREZ-GALÜAN M C, CAMPOS-MARTIN J M, FIERRO J L G. Fischer-Tropsch synthesis on mono-and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors[J]. Appl Catal A: Gen, 2007, 326(1): 65-73. doi: 10.1016/j.apcata.2007.03.037
    [26]
    YOKOTA K, FUJIMOTO K. Supercritical phase Fischer-Tropsch synthesis reaction[J]. Fuel, 1989, 68(2): 255-256.. doi: 10.1016/0016-2361(89)90335-9
    [27]
    SAVOST'YANOV A P, YAKOVENKOA R E, NAROCHNYI G B, LAPIDUS A L. Effect of the dilution of synthesis gas with nitrogen on the Fischer-Tropsch process for the production of hydrocarbons[J]. Solid Fuel Chem, 2015, 49(6): 356-359. doi: 10.3103/S0361521915060099
    [28]
    LU X, ZHU X, HILDEBRANDT D, LIU X, GLASSER D. A new way to look at Fischer-Tropsch Synthesis using flushing experiments[J]. Ind Eng Chem Res, 2011, 50(8): 4359-4365. doi: 10.1021/ie102095c
    [29]
    SCHULZ H. Major and minor reactions in Fischer-Tropsch synthesis on cobalt catalysts[J]. Top Catal, 2003, 26(1/4): 73-85. https://www.researchgate.net/publication/263210706_Major_and_Minor_Reactions_in_FischerTropsch_Synthesis_on_Cobalt_Catalysts
    [30]
    SCHULZ H, NIE Z, OUSMANOV F. Construction of the Fischer-Tropsch regime with cobalt catalysts[J]. Catal Today, 2002, 71(3/4): 351-360. https://www.researchgate.net/publication/244321498_Construction_of_the_Fischer-Tropsch_Regime_With_Cobalt_Catalysts
    [31]
    WILSON J, DE GROOT C. Atomic-scale restructuring in high-pressure catalysis [J]. J Phys Chem, 1995, 99: 7860-7866. doi: 10.1021/j100020a005
    [32]
    LIU Y, CHEN J, FANG K, WANG Y, SUN Y. A large pore-size mesoporous zirconia supported cobalt catalyst with good performance in Fischer-Tropsch synthesis[J]. Catal Commun, 2007, 8(6): 945-949. doi: 10.1016/j.catcom.2006.06.019
    [33]
    KHODAKOV A Y, GRIBOVOL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size efects in Fischer Tropsch synthesis over cobalt-dupported mesoporous silicas[J]. J Catal, 2002, 206(2): 230-241. doi: 10.1006/jcat.2001.3496
    [34]
    OLEWSKI T, TODIC B, NOWICKI L, NIKACEVIC N, BUKUR D B. Hydrocarbon selectivity models for iron-based Fischer-Tropsch catalyst[J]. Chem Eng Res Des, 2015, 95: 1-11. doi: 10.1016/j.cherd.2014.12.015
    [35]
    YAN F, QIAN W, SUN Q, ZHANG H, YING W, FANG D. Product distributions and olefin-to-paraffin ratio over an iron-based catalyst for Fischer-Tropsch synthesis[J]. React Kinet Mech Cat, 2014, 113(2): 471-485. doi: 10.1007/s11144-014-0746-7
    [36]
    TSUBAKI N, FUJIMOTO K. Product control in Fischer-Tropsch synthesis[J]. Fuel Process Technol, 2000, 62(2/3): 173-186. https://www.researchgate.net/publication/257210954_Product_control_in_Fischer-Tropsch_synthesis
    [37]
    ERKEY C, RODDEN J B, AKGERMAN A. Diffusivities of synthesis gas and n-alkanes in Fischer-Tropsch wax[J]. Energy Fuels, 1990, 4(3): 275-276. doi: 10.1021/ef00021a010
    [38]
    IGLESIA E, REYES S C, MADON R J. Transport-enhanced alpha-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis[J]. J Catal, 1991, 129(1): 238-256. doi: 10.1016/0021-9517(91)90027-2
    [39]
    SCHULZ H, CLAEYS M. Reactions of alpha-olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reactor[J]. Appl Catal A: Gen, 1999, 186(1/2): 71-90. https://www.researchgate.net/publication/244106789_Reactions_of_a-olefins_of_different_chain_length_added_during_Fischer-Tropsch_synthesis_on_a_cobalt_catalyst_in_a_slurry_reactor
    [40]
    CHENG J, SONG T, HU P, LOK C M, ELLIS P, FRENCH S. A density functional theory study of the α-olefin selectivity in Fischer-Tropsch synthesis[J]. J Catal, 2008, 255(1): 20-28. doi: 10.1016/j.jcat.2008.01.027
    [41]
    KUIPERS E W, VINKENBURG I H, OOSTERBEEK H. Chain-length dependence of alpha-olefin readsorption in Fischer-Tropsch synthesis[J]. J Catal, 1995, 152(1): 137-146. doi: 10.1006/jcat.1995.1068
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (62) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return