Volume 44 Issue 10
Oct.  2016
Turn off MathJax
Article Contents
XIAO Zhu-qian, SHA Ru-yi, JI Jian-bing, MAO Jian-wei. Mordenite supported Ni-W self-reducing bifunctional catalyst for cellulose hydrogenolysis into ethylene glycol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1225-1232.
Citation: XIAO Zhu-qian, SHA Ru-yi, JI Jian-bing, MAO Jian-wei. Mordenite supported Ni-W self-reducing bifunctional catalyst for cellulose hydrogenolysis into ethylene glycol[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1225-1232.

Mordenite supported Ni-W self-reducing bifunctional catalyst for cellulose hydrogenolysis into ethylene glycol

More Information
  • Corresponding author: Tel: 0571-85070390, E-mail: zjhzxzq@yeah.net
  • Received Date: 2016-06-06
  • Rev Recd Date: 2016-07-10
  • Available Online: 2021-01-23
  • Publish Date: 2016-10-10
  • Based on the reducing gases (H2 and CO) generated from biomass-based carbon at high clacination temperature, self-reducing bifunctional catalyst Ni-W/MOR was prepared by incipient impregnation. This series of catalysts were directly applied to cellulose hydrogenolysis to low carbon polyols in aqueous solution, omitting the catalysts reduction step. The effects of catalysts temperature of the catalyst and weight ratio of active components on conversion of cellulose and yield of target products were investigated. The optimal calcination temperature was 773 K through experimental results. XRD analysis showed that the crystallinity and species of metallic alloys were related to different weight ratios of nickel and tungsten. It was intuitively observed that the active metals showed good dispersion on the surface of MOR through TEM characterization, with particles sizes less than 20 nm. The total yield of low carbon polyols was up to 56.92%, including 52.30% of EG under the reaction condition of 5.0 MPa of H2 for 2 h reaction time and the calcination temperature of catalysts was 773 K.
  • loading
  • [1]
    ROSELINDE O, MICHIEL D, JAN A G, BEAU O B, RICK V, ELENA G, JOHAN A M, ANDREAS R, BERT F S.Conversion of sugar to ethylene glycol with nickel tungsten carbide in a fed-batch reactor:High productivity and reaction network elucidation[J].Green Chem, 2014, 16(2):695-707. doi: 10.1039/C3GC41431K
    [2]
    BEAK I G, YOU S J, PARK E D.Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3[J].Bioresouce Technol, 2012, 114:684-690. doi: 10.1016/j.biortech.2012.03.059
    [3]
    FUKUOKA A, DHEPE P L.Catalytic conversion of cellulose into sugar alcohols[J].Angew Chem Int Ed, 2006, (31):5161-5163.
    [4]
    LUO C, WANG S, LIU H.Cellulose conversion into polyols catalyzed by reversibly formed acids and supported Ruthenium clusters in hot water[J].Angew Chem Int Ed, 2007, 46(40):7636-7639. doi: 10.1002/(ISSN)1521-3773
    [5]
    DENG W P, TAN X, FANG W, ZHANG Q, WANG Y.Converison of cellulose into sorbitol over carbon nanotube-supported Ruthenium catalyst[J].Catal Lett, 2009, 133:167-174. doi: 10.1007/s10562-009-0136-3
    [6]
    NIU Y F, WANG H, ZHU X L, SONG Z Q, XIE X N, LIU X, HAN J Y, GE Q F.Ru supported on zirconia-modified SBA-15 for selective converison of cellulose to hexitol[J].Microporous Mesoporous Mater, 2014, 198:215-222. doi: 10.1016/j.micromeso.2014.07.030
    [7]
    YOU S J, BEAK I G, KIM Y T, JEONG K E, CHAE H J, KIM T W, KIM C U, KIM T J, CHUNG Y M, OH S H, PARK E D.Direct converison of cellulose into polyols or H2 over Pt/Na (H)-ZSM-5[J].Korean J Chem Eng, 2011, 28(3):744-750. doi: 10.1007/s11814-011-0019-3
    [8]
    Sun J Y, LIU H C.Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J].Catal Today, 2014, 234:75-82. doi: 10.1016/j.cattod.2013.12.040
    [9]
    KATERINA F, OLIVER M, MARTIN L, PETER C.Hydrogenolysis of cellulose to valuable chemicals over actived carbon supported mono-and bimetallic nickel/tungsten catalysts[J].Green Chem, 2014, 16:3580-3588. doi: 10.1039/C4GC00664J
    [10]
    WANG A Q, ZHANG T.One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J].Accounts Chem Res, 2013, 46(7):1377-1386. doi: 10.1021/ar3002156
    [11]
    ZHAO M, CHUECH T L, HARRIS A T.SBA-15 supported Ni-Co bimetallic catalysts for enhanced hydrogen production during cellulose decomposition[J].Appl Catal B:Environ, 2011, 101(3/4):522-530.
    [12]
    JI N, ZHENG M Y, WANG A Q, ZHANG T, CHEN J G.Nickel-promoted tungsten carbide catalysts for cellulose conversion:effect of preparation methods[J].ChemSusChem, 2012, 5(5):939-944. doi: 10.1002/cssc.201100575
    [13]
    ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T.Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J].ChemSusChem, 2010, 3:63-66. doi: 10.1002/cssc.v3:1
    [14]
    赵冠鸿, 郑明远, 王爱琴, 张涛.磷化钨催化转化纤维素制乙二醇[J].催化学报, 2010, 31(8):928-932. doi: 10.1016/S1872-2067(10)60104-0

    ZHAO Guan-hong, ZHENG Min-yuan, WANG Ai-qin, ZHANG Tao.Catalytic conversion of cellulose to ethylene glycol over tungsten phosphide catalysts[J].Chin J Catal, 2010, 31(8):928-932. doi: 10.1016/S1872-2067(10)60104-0
    [15]
    KITCHIN J R, NORSKOV J K, BARTEAU M A, CHEN J G.Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals[J].J Chem Phys, 2004, 120(21):10240-10246. doi: 10.1063/1.1737365
    [16]
    CHEN J G, MENNING C A, ZELLNER M B.Monolayer bimetallic surfaces:Experimental and theoretical studies of trends in electronic and chemical properties[J].Surf Sci Pep, 2008, 63(5):201-254.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (119) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return