Volume 48 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
CHEN Ping, LI Ji-hua, GU Ming-yan, CHEN Guang. Migration and transformation characteristics of zigzag char-N in lean oxygen environment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 920-928.
Citation: CHEN Ping, LI Ji-hua, GU Ming-yan, CHEN Guang. Migration and transformation characteristics of zigzag char-N in lean oxygen environment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(8): 920-928.

Migration and transformation characteristics of zigzag char-N in lean oxygen environment

Funds:

National Key Basic R & D Project of China 2017YFB0601805

ational Natural Science Foundation of China 51776001

  • Received Date: 2020-06-30
  • Rev Recd Date: 2020-07-24
  • Available Online: 2021-01-23
  • Publish Date: 2020-08-10
  • The migration and transformation of N in zigzag char-N with the presence of high concentration NO in the reduction zone is investigated by quantum chemistry method. Transformation characteristics of N in lean oxygen environment are systematically calculated from the molecular level by constructing a char-N model containing a hydroxyl group. The results show that NO in the reduction zone can combine with N in the char to form N2; and the presence of oxygen enhances the char chemical activity and further promotes the release of N in the char. The co-existence of oxygen and NO in the reduction zone makes the release of N and the combustion of C occur simultaneously, which is manifested by NO and N in the char combining to form N2, and at the same time oxygen and C in the char formation CO2 or CO. The kinetic calculations of the rate-limiting step rate constants of the C combustion products show that C is easily oxidized to CO under low temperature and lean oxygen conditions, and with the temperature rise the CO2 generation rate increases significantly and the high temperature is conducive to CO2 formation.
  • loading
  • [1]
    FAN W D, LI Y, GUO Q H, CHEN C, WANG Y. Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal[J]. Energy, 2017, 125:417-426. doi: 10.1016/j.energy.2017.02.130
    [2]
    CODA B, KLUGER F, FORTSCH D, SPLIETHOFF H, HEIN K R G. Coal-nitrogen release and NOx evolution in air-staged combustion[J]. Energy Fuels, 1998;12:1322-1327. doi: 10.1021/ef980097z
    [3]
    STADLER H, CHRIST D, HABERMEHL M, HEIL P, KELLERMANN A, OHLIGER A, TOPOROV D, KNEER R. Experimental investigation of NOx emissions in oxycoal combustion[J]. Fuel, 2011, 90(4):1604-1611. https://www.sciencedirect.com/science/article/pii/S0959652618319899
    [4]
    WANG J, FAN W, LI Y, XIAO M, WANG K, REN P. The effect of air staged combustion on NOx emission in dried lignite combustion[J]. Energy, 2012, 37(1):725-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91c6de7648651ae3f3c528774b81ed2c
    [5]
    FAN W, LIN Z, KUANG J, LI Y. Impact of air staging along furnace height on NOx emissions from pulverized coal combustion[J]. Fuel Process Technol, 2010, 91(6):625-634. doi: 10.1016/j.fuproc.2010.01.009
    [6]
    ZHANG X X, ZHOU Z J, ZHOU J H, LIU J Z, CEN K F. Density functional study of NO desorption from oxidation of nitrogen containing char by O2[J]. Combust Sci Technol, 2012, 184(4):445-455. doi: 10.1080/00102202.2011.648031
    [7]
    SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 on the armchair surface of graphite[J]. P Combust Inst, 2005, 30(2):2141-2149. doi: 10.1016/j.proci.2004.08.064
    [8]
    SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 on the zigzag surface of graphite[J]. Combust Flame, 2005, 143(4):629-643. http://www.sciencedirect.com/science/article/pii/S001021800500249X
    [9]
    CHEN P, GU M Y, CHEN X, CHEN J C. Study of the reaction mechanism of oxygen to heterogeneous reduction of NO by char[J]. Fuel, 2019, 236:1213-1225. doi: 10.1016/j.fuel.2018.09.094
    [10]
    高正阳, 杨维结, 阎维平.煤焦催化HCN还原NO的反应机理[J].燃料化学学报, 2017, 45(9):1043-1048. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201709003

    GAO Zheng-yang, YANG Wei-jie, YAN Wei-ping. Reaction mechanism of NO reduction with HCN catalyzed by char[J]. J Fuel Chem Technol, 2017, 45(9):1043-1048. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201709003
    [11]
    ZHANG X X, XIE M, WU H X, LV X X, ZHOU Z J. DFT study of the effect of Ca on NO heterogeneous reduction by char[J]. Fuel, 2020, 265:116995. doi: 10.1016/j.fuel.2019.116995
    [12]
    HOSKINS B L, MILKE J A. Differences in measurement methods for travel distance and area for estimates of occupant speed on stairs[J]. Fire Safety J, 2012, 48:49-57. doi: 10.1016/j.firesaf.2011.12.009
    [13]
    ZHUANG X G, YANG Y S, YANG D P, JI Y J, TANG Z Y. Effect of surface functional groups on the properties of activated carbon[J]. Batt Bimon, 2003, 33(4):199-202.
    [14]
    QI X Y, XUE H B, XIN H H, WEI C X. Reaction pathways of hydroxyl groups during coal spontaneous combustion[J]. Can J Chem, 2016, 94:494-500. doi: 10.1139/cjc-2015-0605
    [15]
    ZHANG H, JIANG X M, LIU J X, SHEN J. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energy Conver Manage, 2014, 83:167-176. doi: 10.1016/j.enconman.2014.03.067
    [16]
    肖萌, 王俊超, 李宇, 范卫东.高温下煤焦表面含氧官能团对NO-煤焦还原反应的影响[J].热能动力工程, 2012, 27(2):227-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rndlgc201202017

    XIAO Meng, WANG Jun-chao, LI Yu, FAN Wei-dong. Effect of oxygen-containing functional groups on no char reduction at high temperature[J]. J Eng Therm Pow, 2012, 27(2):227-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rndlgc201202017
    [17]
    陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁.含氮煤焦还原NO反应路径研究[J].燃料化学学报, 2019, 47(3):279-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201903004

    CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction pathways for the reduction of NO by nitrogen-containing char[J]. J Fuel Chem Technol, 2019, 47(3):279-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb201903004
    [18]
    MONTOYA A, TRUONG T N, SAROFIM A F. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion[J]. J Phys Chem A, 2000, 104(36):8409-8417. doi: 10.1021/jp001045p
    [19]
    PHAM B Q, NGUYEN V H, TRUONG T N. Size dependence of graphene chemistry:A computational study on CO desorption reaction[J]. Carbon, 2016, 101:16-21. doi: 10.1016/j.carbon.2016.01.028
    [20]
    CALDERÓN L A, CHAMORRO E, ESPINAL J F. Mechanisms for homogeneous and heterogeneous formation of methane during the carbon-hydrogen reaction over zigzag edge sites[J]. Carbon, 2016, 102:390-402. doi: 10.1016/j.carbon.2016.02.052
    [21]
    ESPINAL J F, TRUONG T N, MONDRAGÓ N F. Mechanisms of NH3 formation during the reaction of H2 with nitrogen containing carbonaceous materials[J]. Carbon, 2007, 45(11):2273-2279. doi: 10.1016/j.carbon.2007.06.011
    [22]
    PHAM B Q, TRUONG T N. Electronic spin transitions in finite-size graphene[J]. Chem Phy Lett, 2012, 535:75-79. doi: 10.1016/j.cplett.2012.03.041
    [23]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Revision B.01[CP]. Wallingford CT: Gaussian Inc.; 2010.
    [24]
    LAIDLER K J, KING M C. The development of transition-state theory[J]. J Phys Chem, 1983, 87:2657-2664. doi: 10.1021/j100238a002
    [25]
    WIGNER E. Concerning the excess of potential barriers in chemical reactions[J]. Z Phys Chem B:Chem E, 1932, 19:203-216.
    [26]
    YAN W X, LI S G, FAN S G, DENG S. Effect of surface carbon-oxygen complexes during NO reduction by coal char[J]. Fuel, 2017, 204:40-46. doi: 10.1016/j.fuel.2017.05.045
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (133) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return