Volume 47 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
XUE Ji-long, FANG Lei, LUO Wei, MENG Yue, CHEN Tao, XIA Sheng-jie, NI Zhe-ming. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 688-696.
Citation: XUE Ji-long, FANG Lei, LUO Wei, MENG Yue, CHEN Tao, XIA Sheng-jie, NI Zhe-ming. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 688-696.

Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy

Funds:

the National Natural Science Foundation of China 21503188

Zhejiang Natural Science Foundation LQ15B030002

More Information
  • Corresponding author: XIA Sheng-jie, xiasj@zjut.edu.cn; NI Zhe-ming, E-mail: jchx@zjut.edu.cn
  • Received Date: 2019-01-04
  • Rev Recd Date: 2019-03-05
  • Available Online: 2021-01-23
  • Publish Date: 2019-06-10
  • The reaction path and the reaction mechanism of water gas shift reaction (WGSR) on the Cu-Pt-Au catalyst surface were investigated using density functional theory (DFT). The stability and electron activity of binary and ternary catalysts composed of Cu, Pt and Au were studied. The synergistic effect of Pt-Au catalyst in binary alloy is better, and the binding energy of Pt3-Au(111) surface is 77.15 eV, and energy level of d-band center is -3.18 eV. When the Pt3-Au(111) surface continues to be doped with Cu, the binding energy of Cu3-Pt3-Au(111) is 77. 99 eV and the center of d-band is -3. 05 eV according to the binding energy and density of stares. The energy barrier of CO oxidization is 4.84 eV in the redox mechanism. The reaction is not easy to follow the redox mechanism. Moreover, the two intermediates CHO and COOH are competitive, the energy barrier of forming COOH is larger than that of forming CHO, the reaction is more easily carried out according to the formic acid mechanism.
  • loading
  • [1]
    JAMES J S. Catalysis in the development of clean energy technologies[J]. Catal Today, 2005, 100(1):171-180. http://www.sciencedirect.com/science/article/pii/S0920586104007692
    [2]
    ROZOVSKII A Y, LIN G I. Fundamentals of methanol synthesis and decomposition[J]. Top Catal, 2003, 22(3):137-150. doi: 10.1023-A-1023555415577/
    [3]
    AMMAL S C, HEYDEN A. Water-gas shift catalysis at corner atoms of Pt clusters in contact with a TiO2 (110) support surface[J]. ACS Catal, 2014, 4(10):3654-3662. doi: 10.1021/cs5009706
    [4]
    CHOI Y, STENGER H G. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst[J]. Appl Catal B:Environ, 2002, 38(4):259-269. doi: 10.1016/S0926-3373(02)00054-1
    [5]
    WANG C Q, REN F F, ZHAI C Y, ZHANG K, YANG B B, BIN D, WANG H W, YANG P, DU Y K. Au-Cu-Pt ternary catalyst fabricated by electrodeposition and galvanic replacement with superior methanol electrooxidation activity[J]. Rsc Adv, 2014, 4(11):57600-57607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23b0fdea212f36f35da9220aff5e2d1c
    [6]
    GUO Z, LIU B, ZHANG Q H, DENG W P, WANG Y, YANG Y H. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry[J]. Chem Soc Rev, 2014, 43(1):3480-3524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ce95c0d16e2e8ea4b56a411176269c8
    [7]
    THUY-DUONG N, ASHLEIGH E B, JOSÉ A R, SANJAYA D S. Au and Pt nanoparticle supported catalysts tailored for H2 production:From models to powder catalysts[J]. Appl Catal A:Gen, 2016, 518(25):18-47.
    [8]
    YU Q Q, CHEN W, LI Y, JIN Y, SUO Z H. The action of Pt in bimetallic Au-Pt/CeO2 catalyst for water-gas shift reaction[J]. Catal Today, 2010, 158(3):324-328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c75ed0b92e3dc2b7e93e768bc6dd3edc
    [9]
    KONG G X, MA X J, LIU Q J, LI Y, LIU Z T. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations[J]. Physica B, 2018, 533(15):58-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db8c7a1748e6c2c30be918e9a393f4a8
    [10]
    MUHAMMAD A S, AKHTAR H, MUHAMMAD S, ORTWIN L, ALEXANDRE A. DFT study of synergistic catalysis of the water-gas-shift reaction on Cu-Au bimetallic surfaces[J]. ChemCatChem, 2016, 8(6):1208-1217. doi: 10.1002/cctc.201501312
    [11]
    XU Y, ZHANG B. Recent advances in porous Pt-based nanostructures:Synthesis and electrochemical applications[J]. Chem Soc Rev, 2014, 43(8):2439-2450. doi: 10.1039/c3cs60351b
    [12]
    SOHN Y, JI B J, PIL K. Chemically dealloyed Pt-Au-Cu ternary electrocatalysts with enhanced stability in electrochemical oxygen reduction[J]. Res Chem Interm, 2018, 44(6):3697-3712. doi: 10.1007/s11164-018-3375-3
    [13]
    BRAULT P, COUTANCEAU C, JENNINGS P C, VEGGE T, BERNDT J, CAILLARD A, BARANTON S, LANKIANG S. Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth[J]. Int J Hydrogen Energy, 2016, 41(47):22589-22597. doi: 10.1016/j.ijhydene.2016.08.035
    [14]
    GUO W L, LIAN X, XIAO P, LIU F L, YANG Y, ZHANG Y H, ZHANG X X. DFT studies on the interaction of PtxRuyMz(M=Fe, Ni, Cu, Mo, Sn, x+y+z=4, x ≥ 1, y ≥ 1) alloy clusters with O2[J]. Mol Phys, 2015, 113(8):854-865. doi: 10.1080/00268976.2014.983573
    [15]
    ZHANG Y Z, GU Y, LIN S X, WEI J P, WANG Z H, WANG C M, DU Y L, YE W C. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity[J]. Electrochim Acta, 2011, 56(24):8746-8751. doi: 10.1016/j.electacta.2011.07.094
    [16]
    HONG W, WANG J, WANG E. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation[J]. Small, 2014, 10(16):3262-3265. doi: 10.1002/smll.v10.16
    [17]
    GHOLIZADEH R, YU Y X. N2O + CO reaction over Si-and Se-doped graphenes:An ab initio DFT study[J]. Appl Surf Sci, 2015, 357(1):1187-1195. http://www.sciencedirect.com/science/article/pii/S0169433215022783
    [18]
    张田, 郭琛, 魏淑贤, 武中华, 韩兆翔, 鲁效庆.甲硫醇在Co修饰MoS2团簇边缘位的脱硫机理研究[J].化学学报, 2018, 76(1):62-67. http://d.old.wanfangdata.com.cn/Periodical/hxxb201801008

    ZHANG Tian, GUO Chen, WEI Shu-xian, WU Zhong-hua, HAN Zhao-xiang, LU Xiao-qing. Investigation on CH3SH desulfurization mechanism at the edge site of Co-doped MoS2 cluster[J]. Acta Chim Sin, 2018, 76(1):62-67). http://d.old.wanfangdata.com.cn/Periodical/hxxb201801008
    [19]
    钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 蒋军辉, 曹勇勇. Pd/Cu(111)双金属表面催化糠醛脱碳及加氢的反应机理[J].燃料化学学报, 2017, 45(1):34-42. doi: 10.3969/j.issn.0253-2409.2017.01.006

    QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu(111) surface[J]. J Fuel Chem Technol, 2017, 45(1):34-42). doi: 10.3969/j.issn.0253-2409.2017.01.006
    [20]
    GOVIND N, PETERSEN M, FITZGERAL G, KING-SMITH D, ANDZELM J. A generalized synchronous transit method for transition state location[J]. Comput Mater Sci, 2003, 28(2):250-258. doi: 10.1016/S0927-0256(03)00111-3
    [21]
    VINEYARD G H. Frequency factors and isotope effects in solid state rate processes[J]. J Phys Chem Solids, 1957, 3(1):121-127. http://www.sciencedirect.com/science/article/pii/0022369757900598
    [22]
    PISKORZ W, ZASADA F, STELMACHOWSKI P, DIWALD O, KOTARBA A, SOJKA Z. Computational and experimental investigations into N2O decomposition over MgO nanocrystals from thorough molecular mechanism to Ab initio microkinetics[J]. J Phys Chem C, 2011, 115(45):22451-22460. doi: 10.1021/jp2070826
    [23]
    蒋军辉, 钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 邵蒙蒙. In-Au(111)和Ir-Au(111)合金表面的性质及其对巴豆醛的吸附比较[J].物理化学学报, 2016, 32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302

    JIANG Jun-hui, QIAN Meng-dan, XUE Ji-long, XIA Sheng-jie, NI Zhe-ming, SHAO Meng-meng. Comparison of properties of In-Au(111) and Ir-Au(111) alloy surfaces, and their adsorption to crotonaldehyde[J]. Acta Phys-Chim Sin, 2016, 32(12):2932-2940. doi: 10.3866/PKU.WHXB201609302
    [24]
    WU G H, SUN Y, WU X, CHEN R, WANG Y. Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms[J]. Chem Phys Lett, 2017, 686(16):103-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac3248b899ba3cb60a2b7afa25be9545
    [25]
    陶杰, 姚正军, 薛烽.材料科学基础[M].北京:化学工业出版社, 2006, 50-51.

    TAO Jie, YAO Zheng-jun, XUE Feng. Fundamentals of Material Science[M]. Beijing:Chemical Industry Press, 2006, 50-51.
    [26]
    SUSAN M A, RYAN L A, KOJI S, RYO K, KAZUKI K, NGUYEN H L, HIROSHI N, HIDEAKI K. First principles calculations of transition metal binary alloys:Phase stability and surface effects[J]. J Electron Mater, 2017, 46(6):3776-3783. doi: 10.1007/s11664-017-5402-3
    [27]
    黄敏, 徐畅, 程龙玖.[BxAl13-x]-(x=0~13)二元团簇的密度泛函理论研究[J].化学学报, 2016, 74(9):758-763. http://d.old.wanfangdata.com.cn/Periodical/hxxb201609007

    HUANG Min, XU Chang, CHENG Long-jiu. Density functional theory studies of the binary systems[BxAl13-x]-(x=0-13)[J]. Acta Chim Sin, 2016, 74(9):758-763. http://d.old.wanfangdata.com.cn/Periodical/hxxb201609007
    [28]
    钱梦丹, 罗伟, 倪哲明, 夏盛杰, 薛继龙, 蒋军辉. Ru修饰前后Pd(111)面的性质及对糠醛吸附的比较研究[J].高等学校化学学报, 2017, 38(9):1611-1618. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201709017

    QIAN Meng-dan, LUO Wei, NI Zhe-ming, XIA Sheng-jie, XUE Ji-long, JIANG Jun-hui. Comparative study on the properties and adsorption of furfural of Pd(111) surface before and after Ru modification[J]. Chem J Chin Univ, 2017, 38(9):1611-1618. http://d.old.wanfangdata.com.cn/Periodical/gdxxhxxb201709017
    [29]
    CHANG F F, SHAN S Y, VALERI P, ZAKIYA S, AOLIN L, JONATHAN R, WU J F, LUO J, YU G, REN Y, ZHONG C J. Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis[J]. J Am Chem Soc, 2016, 138(37):12166-12175. doi: 10.1021/jacs.6b05187
    [30]
    PALOTAS K, BAKO I, BUGYI L. Structural, electronic and adsorption properties of Rh(111)/Mo(110) bimetallic catalyst:A DFT study[J]. Appl Surf Sci, 2016, 389(15):1094-1103. http://www.sciencedirect.com/science/article/pii/S0169433216316622
    [31]
    JALILI S, ISFAHANI-ZEINI A, HABIBPOUR R. DFT investigations on the interaction of oxygen reduction reaction intermediates with Au (100) and bimetallic Au/M (100) (M=Pt, Cu, and Fe) surfaces[J]. Comput Theor Chem, 2013, 4(1):18-26. doi: 10.1186/2228-5547-4-33
    [32]
    HAMED A, MAJID V. Computational designing ultra-sensitive nano-composite based on boron doped and CuO decorated graphene to adsorb H2S and CO gaseous molecules[J]. Mater Res Express, 2017, 4(7):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9354635
    [33]
    LIU R Q. Adsorption and dissociation of H2O on Au(111) surface:A DFT study[J]. Comput Theor Chem, 2013, 1019(1):141-145. http://www.sciencedirect.com/science/article/pii/S2210271X13002892
    [34]
    AMIT A G, JAMES A D, MANOS M. On the mechanism of low-temperature water gas shift reaction on copper[J]. J Am Chem Soc, 2008, 130(4):1402-1414. doi: 10.1021/ja0768237
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (294) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return