Volume 48 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
ZHENG Nan, SHI Ji-long, WANG Jie. Iron salts-catalyzed biomass hydropyrolysis for production of bio-oil and gaseous hydrocarbons[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 414-423.
Citation: ZHENG Nan, SHI Ji-long, WANG Jie. Iron salts-catalyzed biomass hydropyrolysis for production of bio-oil and gaseous hydrocarbons[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 414-423.

Iron salts-catalyzed biomass hydropyrolysis for production of bio-oil and gaseous hydrocarbons

More Information
  • Corresponding author: WANG Jie, Tel/Fax: +86 2164252462, E-mail: jwang2006@ecust.edu.cn
  • Received Date: 2020-02-13
  • Rev Recd Date: 2020-03-22
  • Available Online: 2021-01-23
  • Publish Date: 2020-04-10
  • The catalytic hydropyrolysis of pine wood was conducted in a fixed bed reactor under a H2 pressure of 5 MPa at different temperatures (600-700 ℃) to investigate the effects of two iron salts, Fe(NO3)3 and FeSO4, on the upgrading of bio-oil and gaseous products. Fe(NO3)3 is found to promote the conversion of biomass to bio-oil and gaseous products, with a carbon conversion rate as high as 97.4%, a CH4 yield of 21.2%, and a bio-oil yield of 32.8% (daf. biomass basis). Moreover, the oxygen content in the bio-oil decreases, the yield of light aromatic hydrocarbon increases and the yield of BTX (benzene, toluene and xylene) reaches 2.6%. In contrast, FeSO4 has an inhibitory effect on the production of gaseous hydrocarbons and bio-oil. The XRD analysis shows that Fe(NO3)3 is transformed to α-Fe during hydropyrolysis, with the amorphous and porous structures of bio-char being formed. This is highly conducive to the catalytic hydrogenation and methanation of bio-char. But FeSO4 is converted to Fe2S3 during the hydropyrolysis, which might poison the catalytic activity.
  • loading
  • [1]
    王昶, 李丹, 郝庆兰, 王刚, 宋扬, 李桂菊.粉粒流化床中松木生物质热解特性的研究[J].燃料化学学报, 2012, 40(2):156-163. doi: 10.3969/j.issn.0253-2409.2012.02.005

    WANG Chang, LI Dan, HE Qin-lan, WANG Gang, SONG Yang, LI Gui-ju. Pyrolysis characteristics of pine biomass in a powder-particle fluidized bed[J]. J Fuel Chem Technol, 2012, 40(2):156-163. doi: 10.3969/j.issn.0253-2409.2012.02.005
    [2]
    BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenergy, 2012, 38:68-94. doi: 10.1016/j.biombioe.2011.01.048
    [3]
    HEO H S, PARK H J, PARK Y K, RYU C, SUH D J, SUH Y W, YIM J H, KIM S S. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed[J]. Bioresour Technol, 2010, 101:591-596. doi: 10.1016-j.biortech.2009.12.078/
    [4]
    李缔, 李攀, 王贤华, 邵敬爱, 杨海平, 陈汉平.基于Fe负载的HZSM-5催化热解制备生物油实验研究[J].燃料化学学报, 2016, 44(5):540-547. doi: 10.3969/j.issn.0253-2409.2016.05.005

    LI Di, LI Pan, WANG Xian-hua, SHAO Jing-ai, YANG Hai-ping, CHEN Han-ping. Experimental study on bio-oil from catalytic pyrolysis on Fe modified HZSM-5[J]. J Fuel Chem Technol, 2016, 44(5):540-547. doi: 10.3969/j.issn.0253-2409.2016.05.005
    [5]
    张秀梅, 陈冠益, 孟祥梅, 李新禹.催化热解生物质制取富氢气体的研究[J].燃料化学学报, 2004, 32(4):446-449. doi: 10.3969/j.issn.0253-2409.2004.04.012

    ZHANG Xiu-mei, CHEN Yi-guan, MENG Xiang-mei, LI Xin-yu. Production of hydrogen-rich gas from biomass by catalytic pyrolysis[J]. J Fuel Chem Technol, 2004, 32(4):446-449. doi: 10.3969/j.issn.0253-2409.2004.04.012
    [6]
    WANG K, KIM K H, BROWN R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chem, 2014, 16:727-735. doi: 10.1039/C3GC41288A
    [7]
    KARANJKAR P U, COOLMAN R J, HUBER G W, BLATNIK M T, ALMALKIE S, KOPS S M D B, MOUNTZIARIS T J, CONNER W C. Production of aromatics by catalytic fast pyrolysis of cellulose in a bubbling fluidized bed reactor[J]. Am Inst Chem Eng, 2014, 60:1320-1335. doi: 10.1002/aic.14376
    [8]
    WANG Y M, WANG J. Multifaceted effects of HZSM-5(proton-exchanged zeolite socony mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor[J]. Bioresour Technol, 2016, 214:700-710. doi: 10.1016/j.biortech.2016.05.027
    [9]
    CHANDLER D S, RESENDE F L P. Comparison between catalytic fast pyrolysis and catalytic fast hydropyrolysis for the production of liquid fuels in a fluidized bed reactor[J]. Energy Fuels, 2019, 33:3199-3209. doi: 10.1021/acs.energyfuels.8b03782
    [10]
    WANG K, XU Y, DUAN P, WANG F, XU Z X. Thermo-chemical conversion of scrap tire waste to produce gasoline fuel[J]. Waste Manage, 2019, 86:1-12. doi: 10.1016/j.wasman.2019.01.024
    [11]
    JAN O, MARCHAND R, ANJOS L C A, SEUFITELLI G V S, NIKOLLA E, RESENDE F L P. Hydropyrolysis of Lignin Using Pd/HZSM-5[J]. Energy Fuels, 2015, 29:1793-1800. doi: 10.1021/ef502779s
    [12]
    THANGALAZHY-GOPAKUMAR S, ADHIKARI S, GUPTA R B, TU M, TAYLOR S. Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments[J]. Bioresour Technol, 2011, 102:6742-6749. doi: 10.1016/j.biortech.2011.03.104
    [13]
    MEESUK S, CAO J P, SATO K, OGAWA Y, TAKARADA T. The effects of temperature on product yields and composition of bio-oils in hydropyrolysis of rice husk using nickel-loaded brown coal char catalyst[J]. J Anal Appl Pyrolysis, 2012, 94:238-245. doi: 10.1016/j.jaap.2011.12.011
    [14]
    MEESUK S, CAO J-P, SATO K, OGAWA Y, TAKARADA T. Study of catalytic hydropyrolysis of rice husk under nickel-loaded brown coal char[J]. Energy Fuels, 2011, 25:5438-5443. doi: 10.1021/ef201266b
    [15]
    ZHENG N, WANG J. Distinctly different performances of two iron-doped charcoals in catalytic hydrocracking of pine wood hydropyrolysis vapor to methane or upgraded bio-oil[J]. Energy Fuels, 2020, 34:546-556. doi: 10.1021/acs.energyfuels.9b03452
    [16]
    ZHENG N, ZHANG J, WANG J. Parametric study of two-stage hydropyrolysis of lignocellulosic biomass for production of gaseous and light aromatic hydrocarbons[J]. Bioresour Technol, 2017, 244:142-150. doi: 10.1016/j.biortech.2017.07.103
    [17]
    MARKER T L, FELIX L G, LINCK M B, ROBERTS M J. Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, Part 1:proof of principle testing[J]. Am Inst Chem Eng, 2012, 31:191-199.
    [18]
    MARKER T L, FELIX L G, LINCK M B, ROBERTS M J, ORTIZ-TORAL P, WANGEROW J. Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, Part 2:Continuous testing[J]. Am Inst Chem Eng, 2013, 33:762-768. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225950745/
    [19]
    LUO G, RESENDE F L P. In-situ and ex-situ upgrading of pyrolysis vapors from beetle-killed trees[J]. Fuel, 2016, 166:367-375. doi: 10.1016/j.fuel.2015.10.126
    [20]
    LI B Q, COLETTE B D, RENE C. Catalytic hydropyrolysis by impregnated sulphided Mo catalyst[J]. Fuel, 1991, 70:254-257. doi: 10.1016/0016-2361(91)90161-3
    [21]
    李文, 李保庆, 孙成功, 尉迟唯, 曹变英.生物质热解、加氢热解及其与煤共热解的热重研究[J].燃料化学学报, 1996, 24(4):341-347. http://www.cqvip.com/Main/Detail.aspx?id=2280284

    LI Wen, LI Bao-qing, SUN Cheng-gong, WEI Chi-wei, CAO Bian-ying. Study on pyrolysis and hydropyrolysis of biomass and copyrolysis between biomass and coal[J]. J Fuel Chem Technol, 1996, 24(4):341-347. http://www.cqvip.com/Main/Detail.aspx?id=2280284
    [22]
    MEIER D, BERNS J, GRIINWALD C, FAIX O. Analytical pyrolysis and semicontinuous catalytic hydropyrolysis of organocell lignin[J]. J Anal Appl Pyrolysis, 1993, 25:335-347. doi: 10.1016/0165-2370(93)80053-3
    [23]
    DAYTON D C, HLEBAK J, CARPENTER J R, WANG K, MANTE O D, PETERS J E. Biomass hydropyrolysis in a fluidized bed reactor[J]. Energy Fuels, 2016, 30:4879-4887. doi: 10.1021/acs.energyfuels.6b00373
    [24]
    杨建丽, 李允梅, 阎瑞萍, 崔洪, 刘振宇, 王哲.充州煤的催化加氢及其重质产物的分离和表征[J].煤炭转化, 1998, 21(2):63-67. http://www.cnki.com.cn/Article/CJFDTotal-MTZH199802014.htm

    YANG Jian-li, LI Yun-mei, YAN Rui-ping, CUI Hong, LIU Zhen-yu, WANG Zhe. Catalytic hydrogenation of YanZhou coal and characterization of the heavy products[J]. Coal Convers, 1998, 21(2):63-67. http://www.cnki.com.cn/Article/CJFDTotal-MTZH199802014.htm
    [25]
    STUMMANN M Z, HANSEN A B, HANSEN L P, DAVIDSEN B, RASMUSSEN S B, WIWEL P, GABRIELSEN J, JENSEN P A, JENSEN A D, HØJ M. Catalytic hydropyrolysis of biomass using molybdenum sulfide based catalyst effect of promoters[J]. Energy Fuels, 2019, 33:1302-1313. doi: 10.1021/acs.energyfuels.8b04191
    [26]
    GAMLIEL D P, WILCOX L, VALLA J A. The effects of catalyst properties on the conversion of biomass via catalytic fast hydropyrolysis[J]. Energy Fuels, 2017, 31:679-687. doi: 10.1021/acs.energyfuels.6b02781
    [27]
    VENKATAKRISHNAN V K, DELGASS W N, RIBEIRO F H, AGRAWAL R. Oxygen removal from intact biomass to produce liquid fuel range hydrocarbons via fast-hydropyrolysis and vapor-phase catalytic hydrodeoxygenation[J]. Green Chem, 2015, 17:178-183. doi: 10.1039/C4GC01746C
    [28]
    CHANG Z, DUAN P, XU Y. Catalytic hydropyrolysis of microalgae:Influence of operating variables on the formation and composition of bio-oil[J]. Bioresour Technol, 2015, 184:349-354. doi: 10.1016/j.biortech.2014.08.014
    [29]
    VENKATAKRISHNAN V K, DEGENSTEIN J C, SMELTZ A D, DELGASS W N, AGRAWAL R, RIBEIRO F H. High-pressure fast-pyrolysis, fast-hydropyrolysis and catalytic hydrodeoxygenation of cellulose:Production of liquid fuel from biomass[J]. Green Chem, 2014, 16:792-802. doi: 10.1039/c3gc41558a
    [30]
    MELLIGAN F, HAYES M H B, KWAPINSKI W, LEAHY J J. A study of hydrogen pressure during hydropyrolysis of Miscanthus x giganteus and online catalytic vapour upgrading with Ni on ZSM-5[J]. J Anal Appl Pyrolysis, 2013, 103:369-377. doi: 10.1016/j.jaap.2013.01.005
    [31]
    MELLIGAN F, HAYES M H B, KWAPINSKI W, LEAHY J J. Hydro-pyrolysis of biomass and online catalytic vapor upgrading with Ni-ZSM-5 and Ni-MCM-41[J]. Energy Fuels, 2012, 26:6080-6090. doi: 10.1021/ef301244h
    [32]
    LI L Y, TAKARADA T. Conversion of hot coke oven gas into light fuel gas over Ni/Al2O3 Catalyst[J]. J Chem Eng Jpn, 2006, 39:461-468. doi: 10.1252/jcej.39.461
    [33]
    GAMLIEL D P, BOLLAS G M, VALLA J A. Bifunctional Ni-ZSM-5 catalysts for the pyrolysis and hydropyrolysis of biomass[J]. Energy Technol, 2017, 5:172-182. doi: 10.1002/ente.201600136
    [34]
    DIETRICH M, RONALD A, OSKAR F. Catalytic hydropyrolysis of lignin:Influence of reaction conditions on the formation and composition of liquid products[J]. Bioresour Technol, 1992, 40:171-177. doi: 10.1016/0960-8524(92)90205-C
    [35]
    ZHANG J, ZHENG N, WANG J. Two-stage hydrogasification of different rank coals with a focus on relationships between yields of products and coal properties or structures[J]. Appl Energy, 2016, 173:438-447. doi: 10.1016/j.apenergy.2016.04.034
    [36]
    ZHANG J, ZHENG N, WANG J. Comparative investigation of rice husk, thermoplastic bituminous coal and their blends in production of value-added gaseous and liquid products during hydropyrolysis/co-hydropyrolysis[J]. Bioresour Technol, 2018, 268:445-453. doi: 10.1016/j.biortech.2018.08.018
    [37]
    YAN H B, MAO F, WANG J. Thermogravimetric-mass spectrometric characterization of thermal decomposition of lignite with attention to the evolutions of small molecular weight oxygenates[J]. J Anal Appl Pyrolysis, 2020, 146:104781. doi: 10.1016/j.jaap.2020.104781
    [38]
    JIANG Y W, YAN H B, GUO Q H, WANG F C, WANG J. Multiple synergistic effects exerted by coexisting sodium and iron on catalytic steam gasification of coal char[J]. Fuel Process Technol, 2019, 191:1-10. doi: 10.1016/j.fuproc.2019.03.017
    [39]
    ZHONG M, ZHAO Y, ZHAI J R, JIN J L, HU H Q, BAI Z Q, LI W. Effects of nickel additives with different anions on the structure and pyrolysis behavior of Hefeng coal[J]. Fuel Process Technol, 2019, 193:273-281. doi: 10.1016/j.fuproc.2019.05.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (295) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return