Volume 47 Issue 8
Aug.  2019
Turn off MathJax
Article Contents
FANG Zheng-mei, LÜ Hai-yan, ZHANG Yuan-yuan, NING Yi-fei, PAN Tie-ying, ZHANG De-xiang. Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 907-914.
Citation: FANG Zheng-mei, LÜ Hai-yan, ZHANG Yuan-yuan, NING Yi-fei, PAN Tie-ying, ZHANG De-xiang. Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 907-914.

Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal

Funds:

the National Key Research and Development Program of China 2016YFB0600303

More Information
  • Corresponding author: ZHANG De-xiang, Tel: 021-64252367, E-mail: zdx@ecust.edu.cn
  • Received Date: 2019-04-23
  • Rev Recd Date: 2019-06-17
  • Available Online: 2021-01-23
  • Publish Date: 2019-08-10
  • To explore effect of solvent characteristics on reaction behavior of coal hydroliquefaction intermediate products, coal from Naomaohu in Xinjiang as raw material, tetralin, recycle solvent and decalin as hydrogen-donor solvents, hydroliquefaction experiments were performed in a high-pressure stirred reactor, and change of free radical concentration of asphaltene was analyzed by EPR. The results indicate that asphaltene in tetralin is formed in large quantities and transformed at the same time with increasing reaction temperature, the yield is from 12.92% at 290 ℃ to a maximum of 34.13% at 350 ℃ and then to 15.98% at 430 ℃. The asphaltene yield in recycle solvent continues to rise first, with 31.89% at 290 ℃ and a maximum of 47.96% at 400 ℃, and then decreases to 33.90% due to coking reaction. The change of asphaltene yield in decalin is consistent with that in tetralin. The change of free radical concentration of asphaltene is the same in three solvents, reaching the maximum at 350 ℃, which is 1.778×1018, 2.323×1018 and 1.930×1018/g respectively. On the whole, the values of free radical concentration of asphaltene in recycle solvent are higher than those in tetralin, and that in decalin is between the two solvents. But the g value in tetralin and recycle solvent is between 2.00323 and 2.00403, and the change is consistent with that of COx content in gas products.
  • loading
  • [1]
    郭薇.新疆淖毛湖矿区煤田地质特征及可采煤层对比研究[J].环球人文地理, 2016, (24):90. doi: 10.3969/j.issn.2095-0446.2016.24.069

    GUO Wei. Study on the geological characteristics and the comparison of coal seams in the coal field of Naomohu in xinjiang[J]. Geol Sur, 2016, (24):90. doi: 10.3969/j.issn.2095-0446.2016.24.069
    [2]
    赵正威, 李聪聪, 包志洪, 魏云迅.新疆淖毛湖矿区1号煤层煤质特征及清洁利用方向[J].中国煤炭地质, 2018, 30(9):1-4. doi: 10.3969/j.issn.1674-1803.2018.09.01

    ZHAO Zheng-wei, LI Cong-cong, BAO Zhi-hong, WEI Yun-xun. Coal quality features and clean utilization irientation of coal No.1 in nom nur mine area, Xinjiang[J]. Coal Geol China, 2018, 30(9):1-4. doi: 10.3969/j.issn.1674-1803.2018.09.01
    [3]
    高晋生, 张德祥.煤液化技术[M].北京:化学工业出版社, 2005:130-162.

    GAO Jin-sheng, ZHANG De-xiang. Coal Liquefaction Technology[M]. Beijing:Chemical Industry Press, 2005:130-162.
    [4]
    周扬, 张媛媛, 陈丽诗, 潘铁英, 张德祥.两种西部煤的化学结构及加氢液化性能[J].煤炭转化, 2017, 40(6):1-6. doi: 10.3969/j.issn.1004-4248.2017.06.001

    ZHOU Yang, ZHANG Yuan-yuan, CHEN Li-shi, PAN Tie-ying, ZHANG De-xiang. Chemical structure and hydrogenation liquefaction performance of two kinds of western coal[J]. Coal Convers, 2017, 40(6):1-6. doi: 10.3969/j.issn.1004-4248.2017.06.001
    [5]
    SIMSEK E H, GULEC F, KAVUSTU H. Application of Kalman filter to determination of coal liquefaction mechanisms using discrete time models[J]. Fuel, 2017, 207:814-820. doi: 10.1016/j.fuel.2017.06.004
    [6]
    赵鹏, 李军芳, 吴艳, 毛学锋, 张晓静, 常秋连.复杂多相体系煤加氢液化反应与氢传递的研究[J].燃料化学学报, 2018, 46(12):1423-1429. doi: 10.3969/j.issn.0253-2409.2018.12.002

    ZHAO Peng, LI Jun-fang, WU Yan, MAO Xue-feng, ZHANG Xiao-jing, CHANG Qiu-lian. Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction[J]. J Fuel Chem Technol, 2018, 46(12):1423-1429. doi: 10.3969/j.issn.0253-2409.2018.12.002
    [7]
    罗化峰, 凌开成, 张卫帅, 王顺华, 冯伟, 申峻.氢气在无催化煤液化中的反应机理[J].煤炭转化, 2011, 34(4):20-24. doi: 10.3969/j.issn.1004-4248.2011.04.006

    LUO Hua-feng, LING Kai-cheng, ZHANG Wei-shuai, WANG Shun-hua, FENG Wei, SHEN Jun. Reaction mechanism of hydrogen for direct coal liquefaction without catalysts[J]. Coal Convers, 2011, 34(4):20-24. doi: 10.3969/j.issn.1004-4248.2011.04.006
    [8]
    NIU B, JIN L J, LI Y, SHI Z W, HU H Q. Isotope analysis for understanding the hydrogen transfer mechanism in direct liquefaction of Bulianta coal[J]. Fuel, 2017, 203:82-89. doi: 10.1016/j.fuel.2017.04.079
    [9]
    李刚, 凌开成.煤高温快速液化影响因素的研究[J].燃料化学学报, 2009, 37(6):648-653. doi: 10.3969/j.issn.0253-2409.2009.06.002

    LI Gang, LING Kai-cheng. Influencing factors on quick coal liquefaction at high temperature[J]. J Fuel Chem Technol, 2009, 37(6):648-653. doi: 10.3969/j.issn.0253-2409.2009.06.002
    [10]
    宁奕飞, 张媛媛, 周扬, 陈丽诗, 潘铁英, 张德祥.反应时间对淖毛湖煤加氢液化中间产物自由基浓度影响研究[J].燃料化学学报, 2018, 46(11):1281-1287. doi: 10.3969/j.issn.0253-2409.2018.11.001

    NING Yi-fei, ZHANG Yuan-yuan, ZHOU Yang, CHEN Li-shi, PAN Tie-ying, ZHANG De-xiang. Effect of reaction time on free radical concentration in hydrogenation liquefaction of Naomaohu coal[J]. J Fuel Chem Technol, 2018, 46(11):1281-1287. doi: 10.3969/j.issn.0253-2409.2018.11.001
    [11]
    陈茺, 许学敏, 高晋生.煤中前沥青烯与沥青烯性质的研究[J].华东理工大学学报, 1998, (1):31-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800239570

    CHEN Chong, XU Xue-min, GAO Jin-sheng. Nature of preasphaltene and asphaltene in coal[J]. J East Chin Univ Sci Technol, 1998, (1):31-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800239570
    [12]
    MALHOTRA V M, BUCKMASTER H A. 9 and 34 GHz EPR study of the free radicals in various asphaltenes:statistical correlation of the g-values with heteroatom content[J]. Org Geochem, 1985, 8(4):235-239. doi: 10.1016/0146-6380(85)90001-4
    [13]
    MICHAEL G, AL-SIRI M, KHAN Z H, ALI F A. Differences in average chemical structures of asphaltene fractions separated from feed and product oils of a mild thermal processing reaction[J]. Energy Fuels, 2005, 19(4):1598-1605. doi: 10.1021/ef049854l
    [14]
    王知彩, 陈恩生, 潘春秀, 任世彪, 雷智平, 水恒福.胜利褐煤液化沥青烯光谱表征[J].燃料化学学报, 2014, 42(6):656-661. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18425.shtml

    WANG Zhi-cai, CHEN En-sheng, PAN Chun-xiu, REN Shi-biao, LEI Zhi-ping, SHUI Heng-fu. Spectral characterization of asphaltene from direct liquefaction of Shengli lignite[J]. J Fuel Chem Technol, 2014, 42(6):656-661. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18425.shtml
    [15]
    薛永兵, 凌开成.溶剂对煤液化影响的研究[J].燃料化学学报, 2012, 40(11):1295-1299. doi: 10.3969/j.issn.0253-2409.2012.11.003

    XUE Yong-bing, LING Kai-cheng. Effect of solvent on direct coal liquefaction[J]. J Fuel Chem Technol, 2012, 40(11):1295-1299. doi: 10.3969/j.issn.0253-2409.2012.11.003
    [16]
    刘沐鑫.煤直接液化过程中溶剂的作用规律及煤裂解自由基的行为研究[D].北京: 中国科学院大学, 2015.

    LIU Mu-xin. The solvent action in liquefaction of coal and pyrolysis free radical behavior of coal[D]. Beijing: University of Chinese Academy of Sciences, 2015.
    [17]
    廉鹏飞.若干潜在煤直接液化溶剂特征及对煤的辅助液化作用[D].北京: 中国科学院大学, 2017.

    LIAN Peng-fei. Study on characteristics of some potential coal liquefaction solvents and their effect on coal liquefaction[D]. Beijing: University of Chinese Academy of Sciences, 2017.
    [18]
    SAKATA R, TAKAYAMA A, SAKANISHI K, MOCHIDA I. Roles of nondonor solvent in the hydrogen-transferring liquefaction of Australian brown coal[J]. Energy Fuels, 1990, 4(5):585-588. doi: 10.1021/ef00023a030
    [19]
    RUDNICK L R, TUETING D. Investigation of free radicals produced during coal liquefaction using ESR[J]. Fuel, 1984, 63(2):153-157. doi: 10.1016/0016-2361(84)90028-0
    [20]
    DUBER S, WIECCKOWSKI A B. Effects of organic solvents on the EPR spectrum of coal[J]. Fuel, 1984, 63(12):1641-1644. doi: 10.1016/0016-2361(84)90092-9
    [21]
    郑榕萍. EPR定量测定煤中自由基的方法及煤液化机理的研究[D].上海: 华东理工大学, 2011.

    ZHENG Rong-ping. Research on quantitative determination of free radicals in coal by EPR and coal liquefaction mechanism[D]. Shanghai: East China University of Science and Technology, 2011.
    [22]
    张德祥, 高晋生, 朱之培.年青煤在石油重油中加氢液化的研究[J].华东理工大学学报, 1986, (3):46-55. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX198603005.htm

    ZHANG De-xiang, GAO Jin-sheng, ZHU Zhi-pei. The liquefaction of some Chinese low rank coals by hydrogenation in various heavy oils of petroleum[J]. J East Chin Univ Sci Technol, 1986, (3):46-55. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDX198603005.htm
    [23]
    刘瑞民, 夏伟平, 张德祥, 郑榕萍, 潘铁英.溶剂供氢能力对褐煤加氢及其液化产物中自由基含量的影响[C]//2010中国新型煤化工发展及示范项目进展论坛论文集.上海: 华东理工大学, 2010: 228-235.

    LIU Rui-min, XIA Wei-ping, ZHANG De-xiang, ZHENG Rong-ping, PAN Tie-ying. Coal liquefaction and the free racicals concentration of liquefied with the different capabitity of hydrogen-donor[C]//Papers collection of 2010 forum on development and demonstration projects of new coal chemical industry in China. Shanghai: East China University of Science and Technology, 2010: 228-235.
    [24]
    郑榕萍, 潘铁英, 史新梅, 周丽芳, 刘瑞民, 张德祥, 高晋生.标准曲线法测定煤中自由基含量[J].波谱学杂志, 2011, 28(2):259-264. doi: 10.3969/j.issn.1000-4556.2011.02.010

    ZHENG Rong-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Quantitative determination of free radical content in coal by standard curve method[J]. J Mag Res, 2011, 28(2):259-264. doi: 10.3969/j.issn.1000-4556.2011.02.010
    [25]
    刘国根, 邱冠周.煤的ESR波谱研究[J].波谱学杂志, 1999, 16(2):177-180. doi: 10.3969/j.issn.1000-4556.1999.02.016

    LIU Guo-gen, QIU Guan-zhou. A study on ESR spectrum of coal[J]. J Mag Res, 1999, 16(2):177-180. doi: 10.3969/j.issn.1000-4556.1999.02.016
    [26]
    舒歌平, 史士东, 李克健.煤炭液化技术[M].北京:煤炭工业出版社, 2003:91-94.

    SHU Ge-ping, SHI Shi-dong, LI Ke-jian. Coal Liquefaction Technology[M]. Beijing:China Coal Industry Publishing House, 2003:91-94.
    [27]
    牛犇.煤直接液化中溶剂的作用及氢传递机理[D].大连: 大连理工大学, 2017.

    NIU Ben. Role of solvents and hydrogen transfer mechanism in direct coal liquefaction[D]. Dalian: Dalian University of Technology, 2017.
    [28]
    NIU B, JIN L J, LI Y, SHI Z W, YAN H X, HU H Q. Interaction between hydrogen-donor and nondonor solvents in direct liquefaction of bulianta coal[J]. Energy Fuels, 2016, 30(12):10260-10267. doi: 10.1021/acs.energyfuels.6b02223
    [29]
    陈丽诗.煤及加氢液化中间产物结构解析与分子模型构建[D].上海: 华东理工大学, 2018.

    CHEN Li-shi. Structure analysis and molecular model construction of coal and its intermediate products derived from coal hydroliquefaction[D]. Shanghai: East China University of Science and Technology, 2018.
    [30]
    PETRAKIS L, GRANDY D W. Electron spin resonance spectrometric study of free radicals in coals[J]. Anal Chem, 1978, 50(2):303-308. doi: 10.1021/ac50024a034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (149) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return