Volume 45 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
WANG Xiao-guang, LIU Dai, CHEN Shao-yun, LIU Yang, ZHANG Yong-chun. Performance of pentaethylenehexamine modified MIL-101(Cr) metal-organic framework in CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 484-490.
Citation: WANG Xiao-guang, LIU Dai, CHEN Shao-yun, LIU Yang, ZHANG Yong-chun. Performance of pentaethylenehexamine modified MIL-101(Cr) metal-organic framework in CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, 2017, 45(4): 484-490.

Performance of pentaethylenehexamine modified MIL-101(Cr) metal-organic framework in CO2 adsorption

More Information
  • Corresponding author: ZHANG Yong-chun, Tel:0411-84986322, Fax:0411-84986322, E-mail:zalidy5518@vip.sina.com
  • Received Date: 2017-01-06
  • Rev Recd Date: 2017-03-13
  • Available Online: 2021-01-23
  • Publish Date: 2017-04-10
  • The metal-organic framework MIL-101(Cr) was synthesized via hydrothermal process and then modified with pentaethylenehexamine (PEHA) through refluxing in ethanol. Various measures such as SEM, XRD, N2 sorption, Elemental analysis and FT-IR were used to characterize the structure, morphology and properties of PEHA-grafted MIL-101(Cr). Meanwhile, the performance of PEHA-grafted MIL-101(Cr) in CO2 adsorption was investigated under 25℃. The results illustrate that the loading of PEHA in MIL-101(Cr) can conspicuously enhance the CO2 adsorption capacity. PEHA-grafted MIL-101(Cr) with a PEHA loading of 0.24 mL exhibits the highest capacity for CO2 adsorption; the adsorption capacity reaches 58.944 mg/g at 25℃ and atmospheric pressure, which is 33% higher than that of the unmodified MIL-101(Cr) (44.208 mg/g). In addition, the CO2 adsorption capacities on both MIL-101(Cr) and PEHA-MIL-101(Cr) are greatly enhanced by increasing pressure, reaching 1 147.59 and 1 256.74 mg/g at 1.1 MPa, respectively. These results suggest that PEHA-modified MIL-101(Cr) could be a good candidate adsorbent for CO2 capture at high pressure.
  • loading
  • [1]
    SUMIDA K, ROGOW D L, MASON J A, MCDONALD T M, BLOCH E D, HERM Z R, BAE T H, LONG J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem Rev, 2011, 112(2):724-781.
    [2]
    YANG H, XU Z, FAN M, GUPTA R, SLIMANE R B, BLAND A E, WRIGHT I. Progress in carbon dioxide separation and capture:A review[J]. J Environ Sci, 2008, 20(1):14-27. doi: 10.1016/S1001-0742(08)60002-9
    [3]
    CHAKMA A, MEHROTRA A K, NIELSEN B. Comparison of chemical solvents for mitigating CO2, emissions from coal-fired power plants[J]. Heat Recovery Syst CHP, 1995, 15(2):231-240. doi: 10.1016/0890-4332(95)90030-6
    [4]
    WANG X, AKHMEDOV N G, HOPKINSON D, HOFFMAN J, DUAN Y, EGBEBI A, RESNIK K, LI B. Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2[J]. Appl Energy, 2016, 161:41-47. doi: 10.1016/j.apenergy.2015.09.094
    [5]
    杨刚胜, 曾淦宁, 赵强, 陈徐, 陈盛积, 艾宁.负载型氨基酸离子液体的制备及其对二氧化碳的吸附性能[J].燃料化学学报, 2016, 44(1):106-112. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18768.shtml

    YANG Gang-sheng, ZENG Gan-ning, ZHAO Qiang, CHEN Xu, CHEN Sheng-ji, AI Ning. Preparation of silica gel supported amino acid ionic liquids and their performance capacity towards carbon dioxide[J]. J Fuel Chem Technol, 2016, 44(1):106-112. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18768.shtml
    [6]
    凌凡, 张忠孝, 樊俊杰, 安海泉.膜分离法、化学吸收法以及联合法分离CO2/CH4试验比较[J].动力工程学报, 2015, 35(3):245-250. http://www.cqvip.com/QK/95606X/201503/665070686.html

    LIN Fan, ZHANG Zhong-xiao, FAN Jun-jie, AN Hai-quan. Experimental study on CO2/CH4 separation respectively by membrane, chemical and the combine method[J]. Chin J Power Eng, 2015, 35(3):245-250. http://www.cqvip.com/QK/95606X/201503/665070686.html
    [7]
    BATES E D, MAYTON R D, NTAI I, DAVIS J H. CO2 capture by a task-specific ionic liquid[J]. J Am Chem Soc, 2002, 124(6):926-927. doi: 10.1021/ja017593d
    [8]
    CEJKA J, CORMA A, ZONES S. Zeolites and Catalysis:Synthesis, Reactions and Applications[M]. Hoboken:John Wiley & Sons, 2010.
    [9]
    CAVENATI S, GRANDE C A, RODRIGUES A E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures[J]. J Chem Eng Data, 2004, 49(4):1095-1101. doi: 10.1021/je0498917
    [10]
    CHUE K, KIM J, YOO Y, CHO S, YANG R. Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption[J]. Ind Eng Chem Res, 2002, 342(2):591-598. https://www.researchgate.net/publication/231367110_Comparison_of_Activated_Carbon_and_Zeolite_13X_for_CO2_Recovery_from_Flue_Gas_by_Pressure_Swing_Adsorption
    [11]
    张所瀛, 刘红, 刘朋飞, 吴培培, 杨祝红, 阳庆元, 陆小华.金属有机骨架材料在CO2/CH4吸附分离中的研究进展[J].化工学报, 2014, 65(5):1563-1570. http://d.g.wanfangdata.com.cn/Periodical_hgxb201405002.aspx

    ZHANG Suo-ying, LIU Hong, LIU Peng-fei, WU Pei-pei, YANG Zhu-hong, YANG Qing-yuan, LU Xiao-hua. Progress of adsorption-based CO2/CH4 separation by metal organic frameworks[J]. J Chem Ind Eng, 2014, 65(5):1563-1570. http://d.g.wanfangdata.com.cn/Periodical_hgxb201405002.aspx
    [12]
    MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J Am Chem Soc, 2005, 127(51):17998-17999. doi: 10.1021/ja0570032
    [13]
    ZIAEE A, CHOVAN D, LUSI M, PERRY IV J J, ZAWOROTKO M J, TOFAIL S A. Theoretical optimization of pore size and chemistry in SIFSIX-3-M hybrid ultramicroporous materials[J]. Cryst Growth Des, 2016, 16(7):3890-3897. doi: 10.1021/acs.cgd.6b00453
    [14]
    BRITT D, FURUKAWA H, WANG B, GLOVER T G, YAGHI O M. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. Proc Natl Acad Sci U S A, 2009, 106(49):20637-20640. doi: 10.1073/pnas.0909718106
    [15]
    FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, MILLANGE F, DUTOUR J, SURBLÉ S, MARGIOLAKI I. A chromium terephthalate-based solid with unusually large pore volumes and surface area.[J]. Science, 2005, 309(5743):2040-2042. doi: 10.1126/science.1116275
    [16]
    HWANG Y K, HONG D Y, CHANG J S, JHUNG S H, SEO Y K, KIM J, VIMONT A, DATURI M, SERRE C, FÉREY G. Amine grafting on coordinatively unsaturated metal centers of MOFs:Consequences for catalysis and metal encapsulation[J]. Angew Chem Int Ed Eng, 2008, 47(22):4144-4148. doi: 10.1002/(ISSN)1521-3773
    [17]
    梁方方, 周凌云, 李想, 樊静.乙二胺改性金属有机骨架材料MIL-101(Cr) 常压下吸附CO2[J].过程工程学报, 2015, 15(6):1069-1074. http://www.jproeng.com/CN/abstract/abstract747.shtml

    LIANG Fang-fang, ZHOU Ling-yun, LI Xiang, FAN Jing. Adsorption of CO2 on ethylenediamine modified metal-organic framework material MIL-101(Cr) under atmospheric pressure[J]. Chin J Proc Eng, 2015, 15(6):1069-1074. http://www.jproeng.com/CN/abstract/abstract747.shtml
    [18]
    LIN Y, LIN H, WANG H, SUO Y, LI B, KONG C, CHEN L. Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites[J]. J Mater Chem A, 2014, 2(35):14658-14665. doi: 10.1039/C4TA01174K
    [19]
    HONG D Y, HWANG Y K, SERRE C, FÉREY G, CHANG J S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites:Surface functionalization, encapsulation, sorption and catalysis[J]. Adv Funct Mater, 2009, 19(10):1537-1552. doi: 10.1002/adfm.v19:10
    [20]
    陈琳琳, 王霞, 郭庆杰.四乙烯五胺修饰介孔硅胶吸附CO2性能的研究[J].燃料化学学报, 2015, 43(1):108-115. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18563.shtml

    CHEN Lin-lin, WANG Xia, GUO Qing-jie. Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel[J]. J Fuel Chem Technol, 2015, 43(1):108-115. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18563.shtml
    [21]
    陈恒. 咪唑化合物辅助合成金属有机骨架MIL-101及其CO2吸附性能研究[D]. 大连: 大连理工大学, 2014.

    CHEN Heng. Synthesis and CO2 Adsorption Property of Metal-organic Framework MIL-101 by an Imidazole-assistant Route[D]. Dalian:Dalian University of Tecnology, 2014.
    [22]
    LIANG Z, MARSHALL M, NG C H, CHAFFEE A L. Comparison of conventional and HF-free-synthesized MIL-101 for CO2 adsorption separation and their water stabilities[J]. Energy Fuels, 2013, 27(12):43-59. https://www.researchgate.net/publication/263947425_Comparison_of_Conventional_and_HF-Free-Synthesized_MIL-101_for_CO2_Adsorption_Separation_and_Their_Water_Stabilities
    [23]
    胡航标, 张涛, 崔征, 唐盛伟.氧化石墨烯-羧基碳纳米管-多乙烯多胺三维蜂窝状材料吸附CO2[J].化工进展, 2016, 35(11):3576-3584. http://mall.cnki.net/magazine/Article/HGJZ201611031.htm

    HU Hang-biao, ZHANG Tao, CUI Zheng, TANG Sheng-wei. Preparation of three-dimensional honeycomb-like material of Graphene oxide-carboxylated carbon nanotube-polyethylenepolyamine to adsorb CO2[J]. Chem Ind Eng Prog, 2016, 35(11):3576-3584. http://mall.cnki.net/magazine/Article/HGJZ201611031.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (134) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return