Volume 46 Issue 9
Sep.  2018
Turn off MathJax
Article Contents
ZHONG Mei, ZHAO Yuan, LI Xian, MA Feng-yun. Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1044-1054.
Citation: ZHONG Mei, ZHAO Yuan, LI Xian, MA Feng-yun. Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1044-1054.

Effects of K+, Ca2+ and Fe3+ on the distribution, structure and quality of the pyrolysis products of Hefeng coal

Funds:

the National Natural Science Foundation of China 21766035

the Key Project of Joint Fund from National Nature Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region U1703252

Youth Science and Technology Innovation Personnel Training Project in Xinjiang Uygur Autonomous Region QN2016BS0152

More Information
  • Corresponding author: ZHONG Mei, E-mail: zhongmei0504@126.com; MA Feng-yun, E-mail: ma_fy@126.com
  • Received Date: 2018-03-29
  • Rev Recd Date: 2018-06-23
  • Available Online: 2021-01-23
  • Publish Date: 2018-09-10
  • The nitrate solution of K+, Ca2+ and Fe3+ was used to treat Hefeng demineralized coal (DC) separately. The weight loss and gas evolution of coal samples were studied by thermogravimetric analyzer. It is found that the total weight loss of treated coal samples decreases, while the concentration of CO2 and H2 increases for treated samples. Then the distribution variation of products during the pyrolysis process of treated coal samples were investigated in a fixed bed reactor together with the analyses of elemental analysis, FT-IR, simulated distillation and GC-MS. The results indicate that the char and gas yields of treated coal samples rise, while the tar yields decline. The unsaturation and condensation of corresponded char samples exhibit a decreasing tendency. Under the action of these metal components, the percentage of light component in the tar increases, especially by 22.4% due to the effect of iron species. GC-MS analysis exhibits that long chain alkanes occupy about 70% of the total relatively, leading to the high content of heavy component in tar, which can be catalytically cracked by K and Fe species.
  • loading
  • [1]
    WANG W S, HUANG S D, ZOU J L. The present situation and policy suggestion of clean coal technology in China[J]. Adv Mater Res, 2013, 616/618:1120-1123.
    [2]
    SHI L, LIU Q Y, GUO X J, WU W Z, LIU Z Y. Pyrolysis behavior and bonding information of coal-A TGA study[J]. Fuel Process Technol, 2013, 108(6):125-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0228907559
    [3]
    BARUAH B P, KHARE P. Pyrolysis of high sulfur Indian coals[J]. Energy Fuels, 2007, 21(6):3346-3352. doi: 10.1021/ef070005i
    [4]
    LUO K, ZHANG C, ZHU S, BAI Y H, LI F. Tar formation during coal pyrolysis under N2, and CO2, atmospheres at elevated pressures[J]. J Anal Appl Pyrolysis, 2016, 118:130-135. doi: 10.1016/j.jaap.2016.01.009
    [5]
    LI C S, SUZUKI K. Resources, properties and utilization of tar[J]. Res Cons Recycl, 2010, 54(11):905-915. doi: 10.1016/j.resconrec.2010.01.009
    [6]
    QU X, LIANG P, WANG Z, ZHANG R, SUN D, GONG X, GAN Z, BI J. Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis[J]. Chem Eng Technol, 2011, 34(1):61-68. doi: 10.1002/ceat.v34.1
    [7]
    GONG X M, WANG Z, LI S G, SONG W L, LIN W G. Coal pyrolysis in a laboratory-scale two-stage reactor:Catalytic upgrading of pyrolytic vapors[J]. Chem Eng Technol, 2015, 37(12):2135-2142.
    [8]
    赵洪宇, 李玉环, 宋强, 吕俊鑫, 舒元锋, 王子民, 阎杰, 曾鸣, 舒新前.外加铁矿石对哈密低阶煤热解特性影响[J].燃料化学学报, 2016, 44(2):154-161. doi: 10.3969/j.issn.0253-2409.2016.02.004

    ZHAO Hong-yu, LI Yu-huan, SONG Qiang, LÜ Jun-xin, SHU Yuan-feng, WANG Zi-min, YAN Jie, ZENG Ming, SHU Xin-qian. Effect of additive iron ore on pyrolysis characteristics of a low rank coal from Hami[J]. J Fuel Chem Technol, 2016, 44(2):154-161. doi: 10.3969/j.issn.0253-2409.2016.02.004
    [9]
    FU Y, GUO Y H, ZHANG K X. Effect of three different catalysts (KCl, CaO and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy Fuels, 2016, 30:2428-2433. doi: 10.1021/acs.energyfuels.5b02720
    [10]
    ZHU T Y, ZHANG S Y, HUANG J J, WANG Y. Effect of calcium oxide on pyrolysis of coal in a fluidized bed[J]. Fuel Process Technol, 2000, 64(1):271-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rlhxxb200001008
    [11]
    FENG J, XUE X Y, LI X H, LI W J, GUO X F, LIU K. Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts[J]. Fuel Process Technol, 2015, 130:96-100. doi: 10.1016/j.fuproc.2014.09.035
    [12]
    HE L, HUI H L, LI S G, LI W G. Production of light aromatic hydrocarbons by catalytic cracking of coal pyrolysis vapors over natural iron ores[J]. Fuel, 2018, 216:227-232. doi: 10.1016/j.fuel.2017.12.005
    [13]
    ÖZTASN A, YÜRÜM Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000, 79(10):1221-1227. doi: 10.1016/S0016-2361(99)00255-0
    [14]
    DING L, ZHOU Z J, GUO Q H, HUO W, YU G S. Catalytic effects of Na2CO3, additive on coal pyrolysis and gasification[J]. Fuel, 2015, 142:134-144. doi: 10.1016/j.fuel.2014.11.010
    [15]
    LI F, CHANG L P, WEN P, XIE K C. Simulated distillation of coal tar[J]. Energy Sources, 2001, 23(2):189-199. doi: 10.1080/00908310151092416
    [16]
    MIN Z H, YIMSIRI P, ASADULLAH M, ZHANG S, LI C Z. Catalytic reforming of tar during gasification. Part Ⅱ. Char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011, 90(7):2545-2552. doi: 10.1016/j.fuel.2011.03.027
    [17]
    PORADA S. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis[J]. Fuel, 2004, 83(7):1071-1078. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ024994232
    [18]
    赵洪宇, 任善普, 贾晋炜, 付兴民, 李子君, 梁新星, 阎杰, 曾鸣, 舒新前.钙、镍离子3种不同负载方式对褐煤热解-气化特性影响[J].煤炭学报, 2015, 40(7):1660-1669. http://d.old.wanfangdata.com.cn/Periodical/mtxb201507029

    ZHAO Hong-yu, REN Shan-pu, JIA Jin-wei, FU Xing-min, LI Zi-jun, LIANG Xin-xing, YAN Jie, ZENG Ming, SHU Xin-qian. Effects of calcium and nickel ions by three different load methods on pyrolysis and gasification characteristics of lignite[J]. J China Coal Soc, 2015, 40(7):1660-1669. http://d.old.wanfangdata.com.cn/Periodical/mtxb201507029
    [19]
    ZENG X, WANG Y, YU J, WU S S, ZHONG M, XU S P, XU G W. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy Fuels, 2011, 25(3):1092-1098. doi: 10.1021/ef101441j
    [20]
    曾昭琼.有机化学参考资料[M].北京:高等教育出版社, 1989.

    ZENG Zhao-qiong. Reference Materials for Organic Chemistry[M]. Beijing:Higher Education Press, 1989.
    [21]
    朱廷钰, 刘丽鹏, 王洋, 黄戒介.氧化钙催化煤温和气化研究[J].燃料化学学报, 2000, 28(1):36-39. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb200001007

    ZHU Ting-yu, LIU Li-peng, WANG Yang, HUANG Jie-jie. Study on coal mild gasification with CaO catalyst[J]. J Fuel Chem Technol, 2000, 28(1):36-39. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb200001007
    [22]
    WIKTORSSON L P, WANZL W. Kinetic parameters for coal pyrolysis at low and high heating rates-a comparison of data from different laboratory equipment[J]. Fuel, 2000, 79(6):701-716. doi: 10.1016/S0016-2361(99)00138-6
    [23]
    王桂茹.催化剂与催化作用[M]. 4版.大连:大连理工大学出版社, 2015.

    WANG Gui-ru. Catalyst and Catalysis[M].4th ed. Dalian:Dalian University of Technology Press, 2015.
    [24]
    XU S Q, ZHOU Z J, XIONG J, YU G S, WANG F C. Effects of alkaline metal on coal gasification at pyrolysis and gasification phases[J]. Fuel, 2011, 90(5):1723-1730. doi: 10.1016/j.fuel.2011.01.033
    [25]
    SHENG C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
    [26]
    SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, POSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [27]
    DANIEL M K, LI X J, JUNICHIRO H, LI C Z. Characterization of the structural features of char from the pyrolysis of cane trash using fourier Transform-Raman spectroscopy[J]. Energy Fuels, 2007, 21(3):1816-1821. doi: 10.1021/ef070049r
    [28]
    OMAE I. Agostic bonds in cyclometalation[J]. J Organometallic Chem, 2011, 96(6):1128-1145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0221647433
    [29]
    齐学军, 郭欣, 罗重奎, 郑楚光.热解过程中铁对神府褐煤焦结构的影响[J].工程热物理学报, 2014, 35(4):796-800. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb201404040&dbname=CJFD&dbcode=CJFQ

    QI Xue-jun, GUO Xin, LUO Zhong-kui, ZHENG Chu-guang. Effect of iron on the structure of shenfu brown coal char during pyrolysis[J]. J Eng Thermophysics, 2014, 35(4):796-800. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gcrb201404040&dbname=CJFD&dbcode=CJFQ
    [30]
    武建军, 周国莉, 高志远, 乔军, 祖静如.半焦制铸造型焦的碳微晶结构X-衍射分析[J].煤炭学报, 2009, 34(12):1693-1696. doi: 10.3321/j.issn:0253-9993.2009.12.020

    WU Jian-jun, ZHOU Guo-li, GAO Zhi-yuan, QIAO Jun, ZU Jing-ru.The X-ray diffraction analysis of carbon micro-crystal structure of the foundry formed coke prepared by semi-coke[J]. J China Coal Soc, 2009, 34(12):1693-1696. doi: 10.3321/j.issn:0253-9993.2009.12.020
    [31]
    MUEAKAMI K, SHIRATO H, OZAKI J I, NISHIYAMA Y. Effects of metal ions on the thermal decomposition of brown coal[J]. Fuel Process Technol, 1996, 46(3):183-194. doi: 10.1016/0378-3820(95)00056-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (394) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return