Volume 47 Issue 9
Sep.  2019
Turn off MathJax
Article Contents
TAN Li, WU Ying-quan, ZHANG Tao, XIE Hong-juan, CHEN Jian-gang. Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1096-1103.
Citation: TAN Li, WU Ying-quan, ZHANG Tao, XIE Hong-juan, CHEN Jian-gang. Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1096-1103.

Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas

Funds:

Open Subject Fund of State Key Laboratory of Coal Coversion J19-20-612

More Information
  • Corresponding author: TAN Li, E-mail: tan@fzu.edu.cn; WU Ying-quan, E-mail: wuyq@sxicc.ac.cn
  • Received Date: 2019-06-26
  • Rev Recd Date: 2019-08-12
  • Available Online: 2021-01-23
  • Publish Date: 2019-09-10
  • The synthesis of isobutanol from syngas is a such complicated process, and the relationship between catalyst properties and isobutanol formation is still not fully understood yet. Coprecipitation is a common preparation method for solid composite oxides synthesis, by which, the catalyst will have high dispersion, strong interaction. However, it also remains many factors affecting the preparation process. In this work, the effect of precipitation temperature on the properties of catalysts at the beginning of precipitation reaction was investigated, and the relationship between the properties of catalysts and the formation of isobutanol was studied by different characterization methods in combination with the catalysts evaluation results, in order to further improve the formation mechanism of isobutanol. The results revealed that at lower precipitation temperature (30 ℃), the CuO was easier to be reduced due to the better Cu dispersion and stronger interaction in CuO and ZrO2, at the same time as the CuO and ZrO2 could form better solid solutions at this condition. Meanwhile, hydroxyl groups were formed on the catalyst surface at lower precipitation temperature during the catalyst preparation process, therefore these hydroxyl groups could react with CO to form surface C1 species, which further promoted the growth of carbon chain and improved the selectivity of isobutanol. With the increase of precipitation temperature, CuO particles were enlarged; CuO-ZrO2 solid solution was gradually destroyed; the interaction in CuO and ZrO2 was weakened; and the content of surface hydroxyl was decreased, resulting in a decrease of surface C1 species and isobutanol selectivity. Among all the catalysts, the highest selectivity of isobutanol (38.7%) was obtained over the CLZ-30 catalyst.
  • loading
  • [1]
    CHEN T, SU J, ZHANG Z, CAO C, WANG X, SI R, LIU X, SHI B, XU J, HAN Y. Structure evolution of Co-CoOx interface for higher alcohol synthesis from syngas over Co/CeO2 catalysts[J]. ACS Catal, 2018, 8(9):8606-8617. doi: 10.1021/acscatal.8b00453
    [2]
    SUN K, GAO X, BAI Y, TAN M, YANG G, TAN Y. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catal Sci Technol, 2018, 8(15):3936-3947. doi: 10.1039/C8CY01074A
    [3]
    LUK H T, MONDELLI C, MITCHELL S, SIOL S, STEWART J A, FERRE D C, PEREZ-RAMIREZ J. Role of carbonaceous supports and potassium promoter on higher alcohols synthesis over copper-iron catalysts[J]. ACS Catal, 2018, 8(10):9604-9618. doi: 10.1021/acscatal.8b02714
    [4]
    AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018, 8(8):7025-7050. doi: 10.1021/acscatal.8b01391
    [5]
    TAN L, YANG G, YONEYAMA Y, KOU Y, TAN Y, VITIDSANTC T, TSUBAKIA N. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Appl Catal A:Gen, 2015, 505:141-149. doi: 10.1016/j.apcata.2015.08.002
    [6]
    寇永利, 解红娟, 刘广波, 武应全, 张欣悦, 韩怡卓, Noritatsu Tsubaki, 谭猗生. ZnCr基催化剂煅烧温度对异丁醇合成性能的影响[J].燃料化学学报, 2013, 41(6):703-709. doi: 10.3969/j.issn.0253-2409.2013.06.010

    KOU Yong-li, XIE Hong-juan, LIU Guang-bo, WU Ying-quan, ZHANG Xin-yue, HAN Yi-zhuo, Noritatsu Tsubaki, TAN Yi-sheng. Effect of calcination temperature on the performance of ZnCr based catalyst in isobutanol synthesis[J]. J Fuel Chem Technol, 2013, 41(6):703-709. doi: 10.3969/j.issn.0253-2409.2013.06.010
    [7]
    GAO X, ZHANG T, WU Y, YANG G, TAN M, LI X, XIE H, PAN J, TAN Y. Isobutanol synthesis from syngas on Zn-Cr based catalysts:New insights into the effect of morphology and facet of ZnO nanocrystal[J]. Fuel, 2018, 217:21-30. doi: 10.1016/j.fuel.2017.12.065
    [8]
    高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕.以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J].物理化学学报, 2014, 30(6):1155-1162. http://www.cnki.com.cn/Article/CJFDTotal-WLHX201406020.htm

    GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin, 2014, 30(6):1155-1162. http://www.cnki.com.cn/Article/CJFDTotal-WLHX201406020.htm
    [9]
    MA Z Y, YANG C, WEI W, LI W H, SUN Y H. Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation[J]. J Mol Catal A:Chem, 2005, 231(1/2):75-81. https://www.sciencedirect.com/science/article/pii/S1381116904009604
    [10]
    FORNERO E L, SANGUINETI P B, CHIAVASSA D L, BONIVARDI A L, BALTANAS M A. Performance of ternary Cu-Ga2O3-ZrO2 catalysts in the synthesis of methanol using CO2-rich gas mixtures[J]. Catal Today, 2013, 213:163-170. doi: 10.1016/j.cattod.2013.03.012
    [11]
    ESPOSITO S, TURCO M, BAGNASCO G, CAMMARANO C, PERNICE P, ARONNE A. Highly dispersed sol-gel synthesized Cu-ZrO2 materials as catalysts for oxidative steam reforming of methanol[J]. Appl Catal A:Gen, 2010, 372(1):48-57. doi: 10.1016/j.apcata.2009.10.006
    [12]
    CHEN H W, YIN A Y, GUO X Y, DAI W L, FAN K N. Sodium hydroxide-sodium oxalate-assisted co-precipitation of highly active and stable Cu/ZrO2 catalyst in the partial oxidation of methanol to hydrogen[J]. Catal Lett, 2009, 131(3/4):632-642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc01b7eb44f12e5db91cd41bd75c3798
    [13]
    AGUILA G, VALENZUELA A, GUERRERO S, ARAYA P. WGS activity of a novel Cu-ZrO2 catalyst prepared by a reflux method. Comparison with a conventional impregnation method[J]. Catal Comm, 2013, 39:82-85. doi: 10.1016/j.catcom.2013.05.007
    [14]
    WANG L X, ZHU W C, ZHENG D F, YU X, CUI J, JIA M J, ZHANG W X, WANG Z L. Direct transformation of ethanol to ethyl acetate on Cu/ZrO2 catalyst[J]. React Kinet Mech Catal, 2010, 101(2):365-375. doi: 10.1007/s11144-010-0216-9
    [15]
    姜涛, 牛玉琴, 钟炳.超临界相由合成气合成低碳醇的研究[J].催化学报, 2000, 21(3):319-322. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb200004009

    JIANG Tao, NIU Yu-qin, ZHONG Bing. Study on synthesis of lower alcohols from syngas in supercritical fluids[J]. Chin J Catal, 2000, 21(3):319-322. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb200004009
    [16]
    谭猗生, 牛玉琴, 钟炳, 彭少逸. ZrO2涂层催化剂用于合成甲醇、异丁醇的初步研究[J].燃料化学学报, 1996, 24(4):368-371. http://www.cnki.com.cn/Article/CJFDTotal-RLHX604.015.htm

    TAN Yi-sheng, NIU Yu-qin, ZHONG Bing, PENG Shao-yi. Conversion of synthesis gas to methanol and isobutanol over ZrO2 coated catalysts[J]. J Fuel Chem Technol, 1996, 24(4):368-371. http://www.cnki.com.cn/Article/CJFDTotal-RLHX604.015.htm
    [17]
    蔡亚宁, 牛玉琴, 陈正华, 钟炳, 彭少逸.锆系催化剂上合成气合成甲醇、异丁醇的研究[J].燃料化学学报, 1996, 24(1):11-16. http://www.cnki.com.cn/article/cjfd1996-rlhx601.002.htm

    CAI Ya-ning, NIU Yu-qin, CHEN Zheng-hua, ZHONG Bing, PENG Shao-yi. Synthesis of methanol and isobutanol from syngas over ZrO2-based catalysts[J]. J Fuel Chem Technol, 1996, 24(1):11-16. http://www.cnki.com.cn/article/cjfd1996-rlhx601.002.htm
    [18]
    赵宁, 杨成, 魏伟, 王太英, 孙予罕, 张静, 谢亚宁, 胡天斗.焙烧温度对合成低碳醇用Cu/Mn/Ni/ZrO2催化剂性能的影响[J].催化学报, 2002, 23(6):571-574. doi: 10.3321/j.issn:0253-9837.2002.06.022

    ZHAO Ning, YANG Cheng, WEI Wei, WANG Tai-ying, SUN Yu-han, ZHANG Jing, XIE Ya-ning, HU Tian-dou. Effect of calcination temperature on Cu/Mn/Ni/ZrO2 catalyst for synthesis of higher alcohols[J]. Chin J Catal, 2002, 23(6):571-574. doi: 10.3321/j.issn:0253-9837.2002.06.022
    [19]
    何代平, 丁云杰. Pd改性K/MnOx-ZrO2催化剂上CO加氢制甲醇和异丁醇[J].催化学报, 2005, 26(11):961-964. doi: 10.3321/j.issn:0253-9837.2005.11.008

    HE Dai-ping, DING Yun-jie. Synthesis of methanol and isobutanol by CO hydrogenation over Pd-modified K/MnOx-ZrO2 catalyst[J]. Chin J Catal, 2005, 26(11):961-964. doi: 10.3321/j.issn:0253-9837.2005.11.008
    [20]
    王军威, 谭猗生, 牛玉琴, 钟炳, 彭少逸.超细ZrO2催化剂的织构和晶相结构对合成甲醇、异丁醇的影响[J].燃料化学学报, 1998, 26(5):390-394. http://www.irgrid.ac.cn/handle/1471x/120577?mode=full&submit_simple=Show+full+item+record

    WANG Jun-wei, TAN Yi-sheng, NIU Yu-qin, ZHONG Bing, PENG Shao-yi. Relations between ZrO2 crystal structure and its catalytic activity to methanol and isobutanol[J]. J Fuel Chem Technol, 1998, 26(5):390-394. http://www.irgrid.ac.cn/handle/1471x/120577?mode=full&submit_simple=Show+full+item+record
    [21]
    WU Y, XIE H, TIAN S, TSUBAKIC N, HAN Y, TAN Y. Isobutanol synthesis from syngas over K-Cu/ZrO2-La2O3(x) catalysts:Effect of La-loading[J]. J Mol Catal A:Chem, 2015, 396:254-260. doi: 10.1016/j.molcata.2014.10.003
    [22]
    张亚文, 严铮光, 李昂, 姜晓成, 谷洛, 廖春生, 严纯华.沉淀条件对稀土氧化物的比表面积和形貌的影响(Ⅱ)[J].中国稀土学报, 2001, 19(5):471-473. doi: 10.3321/j.issn:1000-4343.2001.05.022

    ZHANG Ya-wen, YAN Zheng-guang, LI Ang, JIANG Xiao-cheng, GU Luo, LIAO Chun-sheng, YAN Chun-hua. Effects of precipitation conditions on specific surface area and morphology of rare earth oxides[J]. J Rare Earths, 2001, 19(5):471-473. doi: 10.3321/j.issn:1000-4343.2001.05.022
    [23]
    杜明仙, 翟效珍, 李源, 李林东, 朱华青, 谭长瑜.高比表面积窄孔分布氧化铝的制备Ⅰ.沉淀条件的影响[J].催化学报, 2002, 23(5):465-468. doi: 10.3321/j.issn:0253-9837.2002.05.019

    DU Ming-xian, ZHAI Xiao-zhen, LI Yuan, LI Lin-dong, ZHU Hua-qing, TAN Chang-yu. Preparation of alumina with high specific surface area and narrow pore size distribution Ⅰ. Effect of precipitation conditions[J]. Chin J Catal, 2002, 23(5):465-468. doi: 10.3321/j.issn:0253-9837.2002.05.019
    [24]
    郑建东, 任晓光, 宋永吉, 沈国良.温度对共沉淀法制备LaMnAl11O19催化剂的影响[J].燃料化学学报, 2007, 35(1):117-120. doi: 10.3969/j.issn.0253-2409.2007.01.023

    ZHENG Jian-dong, REN Xiao-guang, SONG Yong-ji, SHEN Guo-liang. Influences of precipitation temperature on LaMnAl11O19 catalysts prepared by co-precipitation[J]. J Fuel Chem Technol, 2007, 35(1):117-120. doi: 10.3969/j.issn.0253-2409.2007.01.023
    [25]
    房德仁, 刘中民, 张慧敏, 许磊, 徐秀峰, 索掌怀.沉淀温度对CuO/ZnO/Al2O3系催化剂前驱体性质的影响[J].天然气化工(C1化学与化工), 2004, 29(4):28-32. doi: 10.3969/j.issn.1001-9219.2004.04.007

    FANG De-ren, LIU Zhong-min, ZHANG Hui-min, XU Lei, XU Xiu-feng, SUO Zhang-huai. Influence of precipitation temperature on phase composition of precursor of CuO/ZnO/Al2O3 catalyst and its catalytic activity for water gas shift reaction[J]. Nat Gas Chem Ind, 2004, 29(4):28-32. doi: 10.3969/j.issn.1001-9219.2004.04.007
    [26]
    CUI Y, FANG R, SHANG H, SHI Z, GONG M, CHEN Y. The influence of precipitation temperature on the properties of ceria-zirconia solid solution composites[J]. J Alloys Comp, 2015, 628:213-221. doi: 10.1016/j.jallcom.2014.12.149
    [27]
    JITTIARPORN P, SIKONG L, KOOPTARNOND K, TAWEEPREDA W. Effects of precipitation temperature on the photochromic properties of h-MoO3[J]. Ceram Int, 2014, 40(8):13487-13495. doi: 10.1016/j.ceramint.2014.05.076
    [28]
    FREI E, SCHAADT A, LUDWIG T, HILLEBRECHT H. The Influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2[J]. ChemCatChem, 2014, 6(6):1721-1730. doi: 10.1002/cctc.201300665
    [29]
    武应全, 王思晨, 解红娟, 高俊文, 田少鹏, 韩怡卓, 谭猗生. Cu对K-LaZrO2异丁醇合成催化剂的影响[J].物理化学学报, 2015, 31(1):166-172. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201501027

    WU Ying-quan, WANG Si-chen, XIE Hong-juan, GAO Jun-wen, TIAN Shao-peng, HAN Yi-zhuo, TAN Yi-sheng. Influence of Cu on the K-LaZrO2 catalyst for isobutanol synthesis[J]. Acta Phys-Chim Sin, 2015, 31(1):166-172. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201501027
    [30]
    武应全, 解红娟, 寇永利, 谭理, 韩怡卓, 谭猗生.焙烧温度对K-Cu/Zn/La/ZrO2催化剂上异丁醇合成的影响[J].燃料化学学报, 2013, 41(7):868-874. doi: 10.3969/j.issn.0253-2409.2013.07.014

    WU Ying-quan, XIE Hong-juan, KOU Yong-li, TAN Li, HAN Yi-zhuo, TAN Yi-sheng. Effect of calcination temperature on performance of K-Cu/Zn/La/ZrO2 for isobutanol synthesis[J]. J Fuel Chem Technol, 2013, 41(7):868-874. doi: 10.3969/j.issn.0253-2409.2013.07.014
    [31]
    武应全, 张涛, 张俊峰, 王立言, 解红娟, 杨国辉, 谭猗生. K对Cu/Zn/La/ZrO2催化剂上CO加氢制备异丁醇的影响[J].陕西师范大学学报(自然科学版), 2019, 47(1):52-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxsfdxxb201901009

    WU Ying-quan, ZHANG Tao, ZHANG Jun-feng, WANG li-yan, XIE Hong-juan, YANG Guo-hui, TAN Yi-sheng. Influence of Cu on the K-LaZrO2 catalyst for isobutanol synthesis[J]. J Shaanxi Normal Univ (Nat Sci Ed), 2019, 47(1):52-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxsfdxxb201901009
    [32]
    KIKUYAMA S, MIURA A, KIKUCHI R, TAKEGUCHI T, EGUCHI K. SOx sorption-desorption characteristics by ZrO2-based mixed oxides[J]. Appl Catal A:Gen, 2004, 259(2):191-197. doi: 10.1016/j.apcata.2003.09.042
    [33]
    HLEIS D, LABAKI M, LAVERSIN H, COURCOT D, ABOUKAIS A. Comparison of alkali-promoted ZrO2 catalysts towards carbon black oxidation[J]. Colloids Surf A:Physicochem Eng Asp, 2008, 33(2/3):193-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deaaa063410e0e86a5586e4970f914dc
    [34]
    GRAF P O, DE VLIEGER D J M, MOJET B L, LEFFERTS L. New insights in reactivity of hydroxyl groups in water gas shift reaction on Pt/ZrO2[J]. J Catal, 2009, 262(2):181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a10776a32789204d0777b2c2ea9fd2a
    [35]
    KARWACKI C J, GANESH P, KENT P R C, GORDON W O, PETERSON G W, NIU J J, GOGOTSI Y. Structure-activity relationship of Au/ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation[J]. J Mater Chem A, 2013, 1(19):6051-6062. doi: 10.1039/c3ta00081h
    [36]
    SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P K. Reduction kinetics of CuO in CuO/ZnO/ZrO2 systems[J]. Phys Chem Chem Phys, 2003, 5(20):4631-4640. doi: 10.1039/B306132A
    [37]
    YAO C Z, WANG L C, LIU Y M, WU G S, CAO Y, DAI W L, HE H Y, FAN K N. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts[J]. Appl Catal A:Gen, 2006, 297(2):151-158. doi: 10.1016/j.apcata.2005.09.002
    [38]
    BIANCHI D, CHAFIK T, KHALFALLAH M, TEICHNER S J. Intermediate species on zirconia supported methanol aerogel catalysts. 5. Adsorption of methanol[J]. Appl Catal A:Gen, 1995, 123(1):89-110. doi: 10.1016/0926-860X(94)00242-8
    [39]
    ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, Frusteri F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A:Gen, 2008, 350(1):16-23. doi: 10.1016/j.apcata.2008.07.028
    [40]
    WU Y, ZHANG J, ZHANG T, SUN K, WANG L, XIE H, TAN Y. Effect of Potassium on the regulation of C1 intermediates in isobutyl alcohol synthesis from syngas over CuLaZrO2 catalysts[J]. Ind Eng Chem Res, 2019, 58(22):9343-9351. doi: 10.1021/acs.iecr.9b01436
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (260) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return