Volume 48 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
BAI Shu-li, ZHANG Xiao-yu, XUE Yao-jia, LI Huan-ying, JIA Jian-bo. Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 723-727.
Citation: BAI Shu-li, ZHANG Xiao-yu, XUE Yao-jia, LI Huan-ying, JIA Jian-bo. Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 723-727.

Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature

Funds:

National Natural Science Foundation of China 21006065

More Information
  • Corresponding author: BAI Shu-li, E-mail: wyuchembsl@126.com
  • Received Date: 2020-03-10
  • Rev Recd Date: 2020-05-11
  • Available Online: 2021-01-23
  • Publish Date: 2020-06-10
  • Silicon carbide supported copper oxide (CuO/SiC) catalysts were prepared by wet impregnation method and characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS); their catalytic performance in the selective catalytic reduction of NOx with NH3 at low temperature was investigated with a mimic flue gas. The results indicate that the catalytic performance of CuO/SiC in the selective catalytic reduction NO with NH3 is related to the loading of copper oxide and reaction temperature. The CuO/SiC catalyst with a CuO loading of 5% exhibits high activity at low temperature, where SO2 shows slightly inhibition upon the NO reduction activity; the NO reduction reaction over CuO/SiC may take place between the adsorbed ammonia and the gaseous or weakly adsorbed NO. Such CuO/SiC catalysts may provide a new choice for the practical removal of NOx in industry.
  • loading
  • [1]
    PARVULESCU V, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998, 46(4):233-316. doi: 10.1016/S0920-5861(98)00399-X
    [2]
    BOSCH H, JANSSEN F. Catalytic reduction of nitrogen oxides:A review on the fundamentals and technology[J]. Catal Today, 1988, 19(31):369-531. http://cn.bing.com/academic/profile?id=d96e4ad34d827b6ef42fe261b028a33e&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    BRANDENBERGER S, KRÖCHER O, TISSLER A, ALTHOFF R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev, 2008, 50(4):492-531. doi: 10.1080/01614940802480122
    [4]
    WANG L, ZHAO J, BAI S, ZHAO H, ZHU Z. Significant catalytic effects induced by the electronic interactions between carboxyl and hydroxyl group modified carbon nanotube supports and vanadium species for NO reduction with NH3 at low temperature[J]. Chem Eng J, 2014, 254:399-409. doi: 10.1016/j.cej.2014.05.096
    [5]
    CASANOVA M, SCHERMANZ K, LLORCAl J, TROVARELLI A. Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2WO3SiO2[J]. Catal Today, 2012, 184(1):227-236. doi: 10.1016/j.cattod.2011.10.035
    [6]
    CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2011, 170(2/3):531-537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=399fd63147e1906cfaa41d3df0ae8a45
    [7]
    SUÁREZ S, MARTÍA J A, YATES M, AVILA P, BLANCO J. N2O formation in the selective catalytic reduction of NOx with NH3 at low temperature on CuO-supported monolithic catalysts[J]. J Catal, 2005, 229(1):227-236.
    [8]
    KOMATSU T, NAGAI T, YASHIMA T. Cu-loaded dealuminated Y zeolites active in selective catalytic reduction of nitric oxide with ammonia[J]. Res Chem Intermed, 2006, 32(3/4):291-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9eaa1bf3e918b7c929c371215cedc92f
    [9]
    LIU Q, LIU Z, XIE G, HUANG Z. Effect of SO2 on a cordierite honeycomb supported CuO catalyst for NO reduction by NH3[J]. Catal Lett, 2005, 101(1/2):27-30. https://www.researchgate.net/publication/239225968_Effect_of_SO_2_on_a_cordierite_honeycomb_supported_CuO_catalyst_for_NO_reduction_by_NH_3
    [10]
    SHAFFER P. A review of the structure of silicon carbide[J]. Acta Crystallogr Sect B:Struct Sci Cryts Eng Mater, 1969, 25(3):477-488. doi: 10.1107/S0567740869002457
    [11]
    EOM J H, KIM Y W, RAJU S. Processing and properties of macroporous silicon carbide ceramics:A review[J]. J Asian Ceram Soc, 2013, 1(3):220-242. doi: 10.1016/j.jascer.2013.07.003
    [12]
    BERTHER A, THOMANN A, AIRES F C S, BRUN M, DERANLOT C, BERTOLINI J, ROZENBAUM J, BRAULT P, ANDREAZZA P. Comparison of Pd/(bulk SiC) catalysts prepared by atomic beam deposition and plasma sputtering deposition:Characterization and catalytic properties[J]. J Catal, 2000, 190(1):49-59. http://cn.bing.com/academic/profile?id=1b6b7b53d4b38d47bd276547cfd58f34&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    ZHI G, GUO X, WANG Y, JIN G, GUO X. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011, 16(1):56-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c7dc5e28e3e1e7c0aa8b33a597bab1a
    [14]
    DUONG-VIET C, BA H, LIU Y, TRUONG-PHUOC L, NHUT J M, PHAM-HUU C. Nitrogen-doped carbon nanotubes on silicon carbide as a metal-free catalyst[J]. Chin J Catal, 2014, 35(6):906-913. doi: 10.1016/S1872-2067(14)60116-9
    [15]
    XIE S, GUO X N, TONG X L, WANG Y Y, GUO X Y. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes[J]. Chem Commun, 2014, 50(2):228-230. doi: 10.1039/C3CC47019A
    [16]
    BAI S, LI H, WANG L, GUAN Y, JIANG S. The properties and mechanism of CuO modified carbon nanotube for NOx removal[J]. Catal Lett, 2014, 144(2):216-221. doi: 10.1007/s10562-013-1157-5
    [17]
    KELLER N, PHAM-HUU C, ESTOURNōS C, LENOUX M J. Low temperature use of SiC-supported NiS2-based catalysts for selective H2S oxidation:Role of SiC surface heterogeneity and nature of the active phase[J]. Appl Catal A:Gen, 2002, 234(1/2):191-205.
    [18]
    LIU Q, LIU Z, SU J. Al2O3-coated cordierite honeycomb supported CuO catalyst for selective catalytic reduction of NO by NH3:Surface properties and reaction mechanism[J]. Catal Today, 2010, 158(3/4):370-376.
    [19]
    RAMIS G, YI L, BUSCA G, TURCO M, KOTUR E, WILLEY R J. Adsorption, activation, and oxidation of ammonia over SCR catalysts[J]. J Catal, 1995, 157(2):523-535. doi: 10.1006-jcat.1995.1316/
    [20]
    TOPSØE N, TOPSØE H. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia I. combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies[J]. J Catal, 1995, 151(1):226-240. http://cn.bing.com/academic/profile?id=ea35cbfde2fe7c98316b97c31636e025&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    AMORES J G, ESCRIBANO V S, RAMIS G, BUSCA G. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides[J]. Appl Catal B:Environ, 1997, 13(1):45-58. doi: 10.1016/S0926-3373(96)00092-6
    [22]
    ZHU Z, LIU Z, NIU H, LIU S, HU T, LIU T, XIE Y. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J]. J Catal, 2001, 197(1):6-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df31f70f6c2ee0a06de58041e04e677e
    [23]
    HUANG B, HUANG R, JIN D, YE D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catal Today. 2007, 126(3/4):279-283. https://www.sciencedirect.com/science/article/pii/S0920586107003422
    [24]
    BAI S, ZNAO J, WANG L, ZHU Z. SO2-promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes[J]. Catal Today, 2010, 158(3/4):393-400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcb151dd546679f67c7cfc6f98eda71e
    [25]
    ZHANG L, ZHANG D, ZHANG J, CAI S, FANG C, HUANG L, LI H, GAO R, SHI L. Nanoscale design of meso-TiO2@MnOx-CeOx/CNTs with a core. shell structure as DeNOx catalysts:Promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013, 5(20):9821-9829. doi: 10.1039/c3nr03150k
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (132) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return