Volume 46 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Abd El-Aziz A. Said, Mohamed Abd El-Aal. Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 67-74.
Citation: Abd El-Aziz A. Said, Mohamed Abd El-Aal. Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 67-74.

Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether

More Information
  • Corresponding author: Abd El-Aziz A. Said, Tel: +20882412427, Fax: +20882080209, E-mail: aasaid55@yahoo.com
  • Received Date: 2017-06-02
  • Rev Recd Date: 2017-11-13
  • Available Online: 2021-01-23
  • Publish Date: 2018-01-10
  • ZrO2 was treated with 10% SO42- from different metal sulfate precursors for methanol dehydration to dimethyl ether. All the samples exhibited tetragonal phase and no diffraction peaks corresponding to metal sulfates or metal oxides were observed. The FT-IR results revealed that there were different interactions between sulfate and ZrO2, and this had a great effect on the surface area of the samples. The catalytic activity was measured over the catalysts in the temperature range of 100-300℃. The results revealed that sulfated zirconia with CuSO4·5H2O and Al2(SO4)3·16H2O showed the best catalytic activity. The maximum yield of DME ≈ 87% was obtained over CuSZ at a reaction temperature of 275℃. Moreover, the catalytic activity of the catalysts was correlated well with their surface acidity that measured by dehydration of isopropanol.
  • loading
  • [1]
    LIU Y, LUO J, GIRLEANU M, ERSEN O, PHAM-HUU C, MENY C, Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from fischer-tropsch synthesis[J]. J Catal, 2014, 318:179-192. https://www.sciencedirect.com/science/article/pii/S0021951714002309
    [2]
    WEI Y, DE JONGH P E, BONATI M L M, LAW D J, SUNLEY G J, DE JONG K P, Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation[J]. Appl Catal A:Gen, 2015, 504:211-219. doi: 10.1016/j.apcata.2014.12.027
    [3]
    DęBEK R, FILIPA M, RIBEIRO G, FERNANDES A, MOTAK M. Dehydration of methanol to dimethyl ether over modified vermiculites[J]. C R Chimie, 2015, 18:1211-1222. doi: 10.1016/j.crci.2015.05.003
    [4]
    MACINA D, PIWOWARSKA Z, TARACH K, G.-MAREK K, RYCZKOWSKI J, CHMIELARZ L. Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol[J]. Mater Res Bull, 2016, 74:425-435. doi: 10.1016/j.materresbull.2015.11.018
    [5]
    STIEFEL M, AHMAD R, ARNOLD U, DÖRING M. Direct synthesis of dimethyl ether from carbon-monoxide-rich synthesis gas:Influence of dehydration catalysts and operating conditions[J]. Fuel Process Technol, 2011, 92:1466-1474. doi: 10.1016/j.fuproc.2011.03.007
    [6]
    TOKAY K C, DOGU T, DOGU G. Dimethyl ether synthesis over alumina based catalysts[J]. Chem Eng J, 2012, 184:278-285. doi: 10.1016/j.cej.2011.12.034
    [7]
    SAID A A, ABD EL-WAHAB M M M, ABD EL-AAL M. Effect of ZrO2 on the catalytic performance of nanoγ-Al2O3 in dehydration of methanol to dimethyl ether at relatively low temperature[J]. Res Chem Intermedia, 2016, 42:1537-1556. doi: 10.1007/s11164-015-2101-7
    [8]
    GARCíA-TRENCO A, MARTÍNEZ A, Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts:New insights into the role of zeolite acidity[J]. Appl Catal A:Gen, 2012, 411/412:170-179. doi: 10.1016/j.apcata.2011.10.036
    [9]
    SAID A A, ABD EL-WAHAB M M, ABD EL-AAL M. The catalytic performance of sulfated zirconia in the dehydration of methanol to dimethyl ether[J]. J Mol Catal A:Chem, 2014, 394:40-47. doi: 10.1016/j.molcata.2014.06.041
    [10]
    YADAV G D, NAIR J J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J]. Microporous Mesoporous Mater, 1999, 33:1-48. doi: 10.1016/S1387-1811(99)00147-X
    [11]
    REDDY B M, PATIL M K. Organic syntheses and transformations catalyzed by sulfated zirconia[J]. Chem Rev, 2009, 109:2185-2208. doi: 10.1021/cr900008m
    [12]
    IVANOV V K, BARANCHIKOV A Y, KOPITSA G P, LERMONTOV S A, YURKOVA L L, GUBANOVA N N, IVANOVA O S, LERMONTOV A S, RUMYANTSEVA M N, VASILYEVA L P, SHARP M, PRANZAS P K, TRETYAKOV Y D. pH control of the structure, composition, and catalytic activity of sulfated zirconia[J]. J Solid state Chem, 2013, 198:496-505. doi: 10.1016/j.jssc.2012.11.022
    [13]
    CLARK J H, MACQUARRIE D J. Handbook of Green Chemistry and Technology[M]. Hoboken:John Wiley & Sons, 2008, 103.
    [14]
    LOPEZ D E, GOODWIN J G JR, BRUCE D A, FURUTA S, Esterification and transesterification using modified-zirconia catalysts[J]. Appl Catal A:Gen, 2008, 339:76-83. doi: 10.1016/j.apcata.2008.01.009
    [15]
    LI X B, NAGAOKA K, LERCHER J A. Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures[J]. J Catal, 2004, 227:130-137. doi: 10.1016/j.jcat.2004.07.003
    [16]
    OCCELLI M L, SCHIRALDI D A, AUROUX A, KEOGH R A, DAVIS B H. Effects of copper on the activity of sulfated zirconia catalysts for n-pentane isomerization[J]. Appl Catal A:Gen, 2001, 209(1/2):165-177. doi: 10.1023/A:1019022600727.pdf
    [17]
    SONG X, REDDY K R, SAYARI A. Effect of Pt and H2on n-butane isomerization over Fe and Mn promoted sulfated zirconia[J]. J Catal, 1996, 161(1):206-210. doi: 10.1006/jcat.1996.0178
    [18]
    SAID A A, ABD EL-WAHAB M M M, ABD EL-AAL M. Catalytic dehydration of methanol to dimethyl ether over nanosized WO3/Al2O3 system under inert and oxidative atmosphere[J]. Monatsh Chem, 2016, 147(9):1507-1516. doi: 10.1007/s00706-015-1649-7
    [19]
    SAID A A, ABD EL-AAL M. Direct dehydrogenation of methanol to anhydrous formaldehyde over Ag2O/γ-Al2O3 nanocatalysts at relatively low temperature[J]. Res Chem Intermedia, 2017, 43(5):3205-3217. doi: 10.1007/s11164-016-2820-4
    [20]
    GU Y, YANG H, LI B, MAO J, AN Y. A ternary nanooxide NiO-TiO2-ZrO2/SO42- as efficient solid superacid catalysts for electro-oxidation of glucose[J]. Electrochim Acta, 2016, 194:367-376. doi: 10.1016/j.electacta.2016.02.113
    [21]
    PERIASAMY A, MURUGANAND S, PALANISWAMY M. Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4crystals[J]. Rasāyan J Chem, 2009, 2(4):981-989. https://www.researchgate.net/publication/312025181_APPLICATION_OF_MICRO_-_RAMAN_SPECTROSCOPY_F_OR_THE_IDENTIFICATION_OF_UN_CLASSIFIED_MINERALS_PRESERVED_IN_OLD_MUSEUM_COLLECTIONS
    [22]
    AL DABBAS M, EISA M Y, KADHIM W H. Estimation of gypsum-calcite percentages using a fourier transform infrared spectrophotometer (FT-IR), in Alexandria Gypsiferous Soil-Iraq[J]. Iraqi J Sci, 2014, 55(4B):1916-1926. https://www.researchgate.net/publication/262638343_Estimation_of_Gypsum-_Calcite_Percentages_Using_a_Fourier_Transform_Infrared_Spectrophotometer_FTIR_in_Alexandria_Gypsiferous_Soil_-Iraq
    [23]
    RAMA RAO S, LINGAM C B, RAJESH D, VIJAYALAKSHMI R P, SUNANDANA C S. Thermal and spectroscopy studies of Ag2SO4 and LiAgSO4[J]. IOSR J Appl Phy, 2013, 4(2):39-43. doi: 10.9790/4861
    [24]
    AHUJA I S, YADAVA C L. Structural information on manganese (Ⅱ), cobalt(Ⅱ), nickel(Ⅱ), zinc(Ⅱ) and cadmium(Ⅱ) sulphate complexes with hexamethylenetetramine (a potentially tetradentate ligand) from their magnetic moments, electronic and infrared spectra[J]. J Mol Struct, 1982, 81(3/4):229-234. http://agris.fao.org/agris-search/...agrovocString=Ligands&onlyFullText=false
    [25]
    MANEVA M, RIZOVA D, GENOV L. IR spectra of NiSO4.nH2O (n=7, 6, 4, 1, 0) and of their deuterated analogues[J]. Spectrosc Lett, 1992, 25(4):603-615. doi: 10.1080/00387019208021535
    [26]
    SAGUNTHALA P, YASOTHA P, VIJAYA L. Growth and characterization of manganese (Ⅱ) sulphate and L-lysine doped manganese (Ⅱ) sulphate (LMnSO4) crystals[J]. Int J Sci Eng Applicat, 2013, 46-83. doi: 10.7753/IJSEANCRTAM.1012
    [27]
    SATO T, OZAWA F, NAKAMURA T, WATANABE H, IKOMA S. Thermal decomposition of zirconium hydroxide[J]. Thermochim Acta, 1979, 34(2):211-220. doi: 10.1016/0040-6031(79)87110-5
    [28]
    LI N, WANG A, WANG X, ZHENG M, CHENG R, ZHANG T. NO reduction by CH4 in the presence of excess O2 over Mn/sulfated zirconia catalysts[J]. Appl Catal B:Environ, 2004, 48(4):259-265. doi: 10.1016/j.apcatb.2003.11.002
    [29]
    LI X, NAGAOKA K, SIMON L J, LERCHER J A. Interaction between sulfated zirconia and alkanes:Prerequisites for active sites-formation and stability of reaction intermediates[J]. J Catal, 2005, 230(1):214-225. doi: 10.1016/j.jcat.2004.11.045
    [30]
    NAYEBZADEH H, SAGHATOLESLAMI N, MASKOOKI A, VAHID B R. Preparation of supported nanosized sulfated zirconia by strontia and assessment of its activities in the esterification of oleic acid[J]. Chem Biochem Eng Q, 2014, 28(3):259-265. doi: 10.15255/CABEQ
    [31]
    SOHN J R, LIM J S. Catalytic properties of NiSO4/ZrO2 promoted with Fe2O3 for acid catalysis[J]. Mater Res Bull, 2006, 41(7):1225-1241. doi: 10.1016/j.materresbull.2006.01.010
    [32]
    JENTOFT F C, HAHN A, KRÖHNERT J, LORENZ G, JENTOFT R E, RESSLER T, WILD U, SCHLÖGL R., HÄβNER C, KÖHLER K K. Incorporation of manganese and iron into the zirconia lattice in promoted sulfated zirconia catalysts[J]. J Catal, 2004, 224(1):124-137. doi: 10.1016/j.jcat.2004.02.012
    [33]
    FERNÁNDEZ-OSORIO A, RAMOS-OLMOS L, JULIÁN C F. Black nanocrystalline cubic zirconia:Manganese-stabilized c-ZrO2 prepared via the sol-gel method[J]. Mater Chem Phys, 2014, 147(3):796-803. doi: 10.1016/j.matchemphys.2014.06.023
    [34]
    VALIGI M, GAZZOLI D, DRAGONE R, MARUCCI A, MATTEI G. Manganese oxide-zirconium oxide solid solutions. An X-ray diffraction, Raman spectroscopy, thermogravimetry and magnetic study[J]. J Mater Chem, 1996, 6(3):403-408. doi: 10.1039/JM9960600403
    [35]
    SAID A A, ABD EL-WAHAB M M M, ABD EL-AAL M. The role of acid sites in the catalytic performance of tungsten oxide during the dehydration of isopropyl and methyl alcohols[J]. Chem Mater Eng, 2016, 4(2):17-25. doi: 10.1007/s11144-017-1207-x.pdf
    [36]
    TYAGI B, MISHRA M K, JASRA R V. Solvent free synthesis of 7-isopropyl-1, 1-dimethyltetralin by the rearrangement of longifolene using nano-crystalline sulfated zirconia catalyst[J]. J Mol Catal A:Chem, 2009, 301(1/2):67-78. https://www.sciencedirect.com/science/article/pii/S1381116908005293
    [37]
    SOHN J R, PARK W C. Characterization and catalytic activity for ethylene dimerization of nickel sulfate supported on zirconia[J]. Appl Catal A:Gen, 2002, 230(1):11-18. https://www.sciencedirect.com/science/article/pii/S0926860X01009528
    [38]
    SOHN J R, KIM Y T, SHIN D C. NiSO4 supported on FeO-promoted ZrO2 catalyst for ethylene dimerization[J]. Bull Korean Chem Soc, 2005, 26(11):1749-1756. doi: 10.5012/bkcs.2005.26.11.1749
    [39]
    PIZZIO L R, BLANCO M N. Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts[J]. Appl Catal A:Gen, 2003, 255(2):265-277. doi: 10.1016/S0926-860X(03)00565-9
    [40]
    BREITKOPF C, MATYSIK S, PAPP H. Selective poisoning of active centers of sulfated zirconia monitored by TAP, XPS, and DRIFTS[J]. Appl Catal A:Gen, 2006, 301(1):1-8. doi: 10.1016/j.apcata.2005.11.009
    [41]
    CHEUNG T K, DITRI J L, GATES B C. Low-temperature superacid catalysis:Reactions of n-butane catalyzed by iron-and manganese-promoted sulfated zirconia[J]. J Catal, 1995, 151(2):464-466. doi: 10.1006/jcat.1995.1050
    [42]
    GAO Z, XIA Y, HUA W, MIAO C. New catalyst of SO42-/Al2O3-ZrO2 for n-butane isomerization[J]. Top Catal, 1998, 6(1/4):101-106. doi: 10.1023/A:1019122608037
    [43]
    YOUNES M K, GHORBEL A. Comparative study of the acidity of sulphated zirconia supported on alumina prepared by sol-gel and impregnation methods[J]. J Sol-Gel Sci Technol, 2003, 26(1/3):677-680. doi: 10.1023/A:1020769331891
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (83) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return