Volume 44 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
YANG Cheng, ZHANG Cheng-hua, XU Jian, WU Bao-Shan, YANG Yong, LI Yong-wang. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 837-844.
Citation: YANG Cheng, ZHANG Cheng-hua, XU Jian, WU Bao-Shan, YANG Yong, LI Yong-wang. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 837-844.

One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst

Funds:

The project was supported by the National Natural Science Foundation of China 91545109

The project was supported by the National Natural Science Foundation of China 21173249

More Information
  • Corresponding author: ZHANG Cheng-hua, Tel:010-69667802, E-mail:zhangchh@sxicc.ac.cn
  • Received Date: 2016-02-26
  • Rev Recd Date: 2016-04-18
  • Available Online: 2021-01-23
  • Publish Date: 2016-07-10
  • A series of ZrO2 nanoparticles with different particle sizes and different crystalline phases were prepared using coprecipitation and hydrothermal methods. Their physico-chemical properties were characterized by N2 physisorption, XRD, TEM, Raman spectroscopy, XPS, and NH3-TPD techniques. The catalytic performances for syngas conversion were tested at 400 ℃, 3 MPa, gas hourly space velocity (GHSV) of 500 mL/(gcat·h), and H2/CO/Ar (volume ratio)=5:5:1. It was found that syngas can be directly converted into hydrocarbons over ZrO2 nanoparticles. The hydrocarbon products are mainly composed of isomerized olefins, cyclenes, and aromatics. The selectivity of C5+ hydrocarbons is up to 48%. Moreover, the aromatic concentration in C5+ ranges from 30% to 53% depending on ZrO2 structures. It is also found that the monoclinic ZrO2 shows higher activity than the tetragonal one. Monoclinic ZrO2 with larger specific surface area and acid amount show highest CO conversion as well as the yield of target products, but the monoclinic ZrO2 with lager particle size has the higher acid surface density and results in the higher aromatic selectivity. Consequently, acidity is the key factor for CO conversion. And high acid surface density promotes the formation of aromatics but acid amount affects the activity.
  • loading
  • [1]
    SARTIPI S, MAKKEE M, KAPTEIJN F, GASCON J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: A review[J]. Catal Sci Technol, 2014, 4(4): 893-907. doi: 10.1039/c3cy01021j
    [2]
    SARTIPI S, ALBERTS M, SANTOS V P, NASALEVICH M, GASCON J, KAPTEIJN F. Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer-Tropsch synthesis[J]. ChemCatChem, 2014, 6(1): 142-151. doi: 10.1002/cctc.v6.1
    [3]
    DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev, 2008, 37(12): 2758-2781. doi: 10.1039/b805427d
    [4]
    DRY M E. Fischer-Tropsch reactions and the environment[J]. Appl Catal A: Gen, 1999, 189(2): 185-190. doi: 10.1016/S0926-860X(99)00275-6
    [5]
    ANDERSON R B. Catalysts for the Fischer-Tropsch synthesis[C]. New York: Van Nostrand Reinhold, 1956.
    [6]
    UDAYA V, RAO S, GORMLEY R J. Bifunctional catalysis in syngas conversions[J]. Catal Today, 1990, 6(3): 207-234. doi: 10.1016/0920-5861(90)85003-7
    [7]
    VAN Der LAAN G P, BEENACKERS A. Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review[J]. Catal Rev, 1999, 41(3/4): 255-318. http://d.wanfangdata.com.cn/NSTLQK_10.1081-CR-100101170.aspx
    [8]
    相宏伟, 杨勇, 李永旺.煤炭间接液化:从基础到工业化[J].中国科学:化学, 2014, 12: 1876-1892. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201412005.htm

    XIANG Hong-wei, YANG Yong, LI Yong-wang. Indirect coal liquefaction: from base to industrialization[J]. Sci China Chem, 2014, 12: 1876-1892. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201412005.htm
    [9]
    SUN B, QIAO M H, FAN K N A, ULRICH J, TAO F. Fischer-Tropsch synthesis over molecular sieve supported catalysts[J]. ChemCatChem, 2011, 3(3): 542-550. doi: 10.1002/cctc.v3.3
    [10]
    TOEMEN S, ABU BAKAR W A W, ALI R. Investigation of Ru/Mn/Ce/Al2O3 catalyst for carbon dioxide methanation: Catalytic optimization, physicochemical studies and RSM[J]. J Taiwan Inst Chem E, 2014, 45(5): 2370-2378. doi: 10.1016/j.jtice.2014.07.009
    [11]
    FAN J, WENG D, WU X D, RAN R. Modification of CeO2-ZrO2 mixed oxides by coprecipitated/impregnated Sr: Effect on the microstructure and oxygen storage capacity[J]. J Catal, 2008, 258(1): 177-186. doi: 10.1016/j.jcat.2008.06.009
    [12]
    GE S, HE D, LI Z. A mesoporous Ce0.5Zr0.5O2 solid solution catalyst for CO hydrogenation to iso-C4 hydrocarbons[J]. Catal Lett, 2008, 126(1/2): 193-199.
    [13]
    ZHU Z, HE D. CO hydrogenation to iso-C4 hydrocarbons over CeO2-TiO2 catalysts[J]. Fuel, 2008, 87(10/11): 2229-2235.
    [14]
    PICHLER H, ZIESECKE K H. Isosynthesis by reduced oxide catalysts[J]. Brennst Chem, 1949, 30: 13-80.
    [15]
    MAEHASHI T, MARUYA K, DOMEN K, AIKA K, ONISHI T. Selective formation of iso-butene from carbon-monoxide and hydrogen over zirconium-oxide catalyst[J]. Chem Lett, 1984, 5: 747-748. http://cat.inist.fr/?aModele=afficheN&cpsidt=9682618
    [16]
    MARUYA K, MAEHASHI T, HARAOKA T, NARUI S, ASAKAWA Y, DOMEN K, ONISHI T. The CO-H2 reaction over ZrO2 to form isobutene selectively[J]. Bull Chem Soc Jpn, 1988, 61(3): 667-671. doi: 10.1246/bcsj.61.667
    [17]
    NANCY B. JACKSON J G E. The surface characteristics required for isosynthesis over zirconium dioxide and modified zirconium dioxide[J]. J Catal, 1990, 126(1): 31-45. doi: 10.1016/0021-9517(90)90044-K
    [18]
    SU C L, HE D H, LI J R, CHEN Z X, ZHU Q M. Synthesis of isobutene from synthesis gas over nanosize zirconia catalysts[J]. Appl Catal A: Gen, 2000, 202(1): 81-89. doi: 10.1016/S0926-860X(00)00461-0
    [19]
    LI Y W, HE D H, YUAN Y B, CHEN Z X, ZHU Q M. Selective formation of isobutene from CO hydrogenation over zirconium dioxide based catalysts[J]. Energy Fuels, 2001, 15(6): 1434-1440. doi: 10.1021/ef010064a
    [20]
    LI Y W, HE D H, CHENG Z X, SU C L, LI R J, ZHU Q M. Effect of calcium salts on isosynthesis over ZrO2 catalysts[J]. J Mol Catal A: Chem, 2001, 175(1/2): 267-275. http://en.journals.sid.ir/ViewPaper.aspx?ID=396927
    [21]
    LI Y W, HE D H, ZHU Q M, ZHANG X, XU B Q. Effects of redox properties and acid-base properties on isosynthesis over ZrO2-based catalysts[J]. J Catal, 2004, 221(2): 584-593. doi: 10.1016/j.jcat.2003.09.023
    [22]
    ZHANG R J, HE D H. Effect of alcohol solvents treated ZrO (OH)2 hydrogel on properties of ZrO2 and its catalytic performance in isosynthesis[J]. J Nat Gas Chem, 2012, 21(1): 1-6. doi: 10.1016/S1003-9953(11)60324-1
    [23]
    MARUYA K, KOMIYA T, HAYAKAWA T, LU L H, YASHIMA M. Active sites on ZrO2 for the formation of isobutene from CO and H2[J]. J Mol Catal A: Chem, 2000, 159(1): 97-102. doi: 10.1016/S1381-1169(00)00176-X
    [24]
    ZHANG R, LIU H, HE D. Pure monoclinic ZrO2 prepared by hydrothermal method for isosynthesis[J]. Catal Commun, 2012, 26: 244-247. doi: 10.1016/j.catcom.2012.06.005
    [25]
    CHANG C D, LANG W H, SILÜESTRI A J. Synthesis gas conversion to aromatic-hydrocarbon[J]. J Catal, 1979, 56(2): 268-273. doi: 10.1016/0021-9517(79)90113-1
    [26]
    LI W Z, HUANG H, LI H J, ZHANG W, LIU H C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir, 2008, 24(15): 8358-8366. doi: 10.1021/la800370r
    [27]
    李为臻, 刘海超.溶剂热法合成纯单斜和四方晶相氧化锆中的溶剂效应[J].物理化学学报, 2008, 24(12): 2172-2178. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200812007.htm

    LI Wei-zhen, LIU Hai-chao. Solvent effects on the solvothermal synthesis of pure monoclinic and tetragonal zirconia nanoparticles[J]. Acta Phys-Chim Sin, 2008, 24(12): 2172-2178. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200812007.htm
    [28]
    李美俊, 冯兆池, 张静, 应品良, 辛勤, 李灿.紫外拉曼光谱研究焙烧气氛对氧化锆相变的影响[J].催化学报, 2003, 11: 861-866. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200311013.htm

    LI Mei-jun, FENG Zhao-chi, ZHANG Jing, YING Pin-liang, XIN qin, LI Can. Study of influence of calcination atmosphere on phase transformation of zirconia by UV raman spectroscopy[J]. Chin J Catal, 2003, 11: 861-866. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200311013.htm
    [29]
    ZHANG W, TAN Y Y, GAO Y L, WU J X, TANG B. Ultrafine nano zirconia as electrochemical pseudocapacitor material[J]. Ceram Int, 2015, 41(2): 2626-2630. doi: 10.1016/j.ceramint.2014.10.047
    [30]
    ARDIZZONE S, BIANCHI C L. XPS characterization of sulphated zirconia catalysts: The role of iron[J]. Surf Interface Anal, 2000, 30(1): 77-80. doi: 10.1002/(ISSN)1096-9918
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (102) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return