Volume 46 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
CHEN Ping, GU Ming-yan, CHEN Jin-chao, CHEN Xue, LU Kun. The mechanism of heterogeneous reduction reaction of NO by moderate gasification char[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 918-924.
Citation: CHEN Ping, GU Ming-yan, CHEN Jin-chao, CHEN Xue, LU Kun. The mechanism of heterogeneous reduction reaction of NO by moderate gasification char[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 918-924.

The mechanism of heterogeneous reduction reaction of NO by moderate gasification char

Funds:

the National Key Basic R & D project of China 2017YFB0601805

National Natural Science Foundation of China 51776001

National Natural Science Foundation of China 51376008

More Information
  • Corresponding author: GU Ming-yan, Tel/Fax: 13955598327, E-mail: gumy@ahut.edu.cn
  • Received Date: 2018-05-04
  • Rev Recd Date: 2018-06-14
  • Available Online: 2021-01-23
  • Publish Date: 2018-08-10
  • Zigzag carbonaceous model was applied to investigate the heterogeneous reduction mechanism of NO by moderate gasification char through the density functional theory in quantum chemistry method combined with thermodynamics and kinetics. The reaction path of heterogeneous reduction of NO by moderate gasification char were analyzed, and the energy change during heterogeneous reduction, thermodynamic and kinetic analysis were conducted. Research results show that the moderate gasification char is prone to adsorb NO. The process of CO desorption, which provides active sites for NO reduction, is a reaction rate determining step, and need to overcome the maximum barrier(398.03 kJ/mol). The reduction reaction is spontaneous and exothermic reaction in the coal combustion system and takes place in one direction. According to the theory of reaction rate determining step, the progress of the reaction need to overcome the larger activation energy(389.83 kJ/mol), and according to Arrhenius expression, the overall reaction rate is greatly affected by temperature. The higher the temperature is, the faster the reaction rate is, and the more favorable for NO reduction.
  • loading
  • [1]
    付兴民, 张玉秀, 郭战英, 刘海兵, 柳树成, 贾晋炜, 舒新前.炼焦煤尾煤热解特性及动力学研究[J].煤炭学报, 2013, 38(2):320-325. http://www.oalib.com/paper/4233736

    FU Xing-min, ZHANG Yu-xiu, GUO Zhan-ying, LIU Hai-bing, LIU Shu-cheng, JIA Jin-wei, SHU Xin-qian. Characteristics andkinetics of the pyrolysis of coking coal tailings[J]. J China Coal Soc, 2013, 38(2):320-325. http://www.oalib.com/paper/4233736
    [2]
    ZHENG M, LI X, LIU J, GUO L. Initial chemical reaction simulation of coal pyrolysis via reaxff molecular dynamics[J]. Energy Fuels, 2013, 27(6):2942-2951. doi: 10.1021/ef400143z
    [3]
    苏亚欣, 苏阿龙, 成豪.金属铁直接催化还原NO的实验研究[J].煤炭学报, 2013, 38(S1):206-210. http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?file_no=20170514003&flag=1

    SU Ya-xin, SU A-long, CHENG Hao. Experimental study on direct catalytic reduction of NO by metallic iron[J]. J China Coal Soc, 2013, 38(S1):206-210. http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?file_no=20170514003&flag=1
    [4]
    SUZUKI T, KYOTANI T, TOMITA A. Study on the carbon-nitric oxide reactionin the presence of oxygen[J]. Ind Eng Chem Res, 1994, 33:2840-2845. doi: 10.1021/ie00035a038
    [5]
    YAMASHITA H, TOMITA A, YAMADA H, KYOTANI T, RADOVIC L R. Influence of char surfacechemistry on the reduction of nitric oxide with chars[J]. Energy Fuels, 1993, 7:85-89. doi: 10.1021/ef00037a014
    [6]
    GUPTA H, FAN L-S. Reduction of nitric oxide from combustion flue gas bybituminous coal char in the presence of oxygen[J]. Ind Eng Chem Res, 2003, 42:2536-2543. doi: 10.1021/ie020693n
    [7]
    XIN J, SUN B M, ZHU H Y, YIN S J, ZHANG Z X, ZHONG Y F. Variation analysis of Mayer bond order during the heterogeneous reduction reaction between NO and char edge models[J]. J China Coal Soc, 2014, 39(4):771-775.
    [8]
    ZHOU Z, ZHANG X, ZHOU J, LIU J, CEN K. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Source, 2014, 36(2):158-166. doi: 10.1080/15567036.2010.506477
    [9]
    ZHU H Y, SUN B M, XINJ, YIN S J, XIAO H P. Quantum chemistry research on NO heterogeneous reduction by char with the participation of CO under oxy-fuel combustion atmosphere[J]. J China Coal Soc, 2015, 40(7):1641-1647. https://www.researchgate.net/publication/282931204_Quantum_chemistry_research_on_NO_heterogeneous_reduction_by_char_with_the_participation_of_CO_under_oxy-fuel_combustion_atmosphere
    [10]
    ZHANG H, LIU J, WANG X, JIANG X. Density functional theory study on two different oxygen enhancement mechanisms during NO-char interaction[J]. Combust Flame, 2016, 169:11-18. doi: 10.1016/j.combustflame.2016.03.023
    [11]
    高正阳, 杨维结, 阎维平.煤焦催化HCN还原NO的反应机理[J].燃料化学学报, 2017, 45(9):1043-1048. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19083.shtml

    GAO Zheng-yang, YANG Wei-jie, YAN Wei-ping. Reaction mechanism of NO reduction with HCN catalyzed by char[J]. J Fuel Chem Technol, 2017, 45(9):1043-1048. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19083.shtml
    [12]
    KARINA S, BRIAN S H. Density functional study of the chemisorption of O2 on the zig-zag surface of graphite[J]. Combust Flame, 2005, 143(4):629-643. doi: 10.1016/j.combustflame.2005.08.026
    [13]
    SENDT K, HAYNES B S. Density functional study of the reaction of carbon surface oxides:the behavior of ketones[J]. J Phys Chem A, 2005, 109(15):3438-3447. doi: 10.1021/jp045111p
    [14]
    SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. J Phys Chem C, 2007, 111(14):5465-5473. doi: 10.1021/jp067363r
    [15]
    ZHANG H, JIANG X, LIU J, SHEN J. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energy Convers Manage, 2014, 83(83):167-176.
    [16]
    YANG F H, YANG R T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:Insight into hydrogen storage in carbon nanotubes[J]. Carbon, 2002, 40(3):437-444. doi: 10.1016/S0008-6223(01)00199-3
    [17]
    CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998, 36(7):1061-1070.
    [18]
    MIN J X, WANG N B, WANG M F, HUO P J, LIU D. Investigation on the catalytic effects of AAEM during steam gasification and the resultant char reactivity in oxygen using Shengli lignite at different forms[J]. Int J Coal Sci Technol, 2015, 2(3):223-231. doi: 10.1007/s40789-015-0083-0
    [19]
    LI H B, YU Y, HAN M F, LEI Z. Simulation of coal char gasification using O2/CO2[J]. Int J Coal Sci Technol, 2014, 1(1):81-87. doi: 10.1007/s40789-014-0010-9
    [20]
    钟俊, 高正阳, 丁艺, 余岳溪, 杨维结. Zigzag煤焦表面异相还原N2O反应[J].煤炭学报, 2017, 42(11):3028-3034.

    ZHONG Jun, GAO Zheng-yang, DING Yi, YU Yue-xi, YANG Wei-jie. Heterogeneous reduction reaction of N2O by char based on Zigzag carbonaceous model[J]. J China Coal Soc, 2017, 42(11):3028-3034.
    [21]
    张秀霞. 焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发[D]. 浙江: 浙江大学, 2012.

    ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Zhejiang: Zhejiang University, 2012.
    [22]
    SENDT K, HAYNES B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene[J]. Proc Combust Inst, 2011, 33(2):1851-1858. doi: 10.1016/j.proci.2010.06.021
    [23]
    PHAM B Q, TRUONG T N. Electronic spin transitions in finite-size graphene[J]. Chem Phys Lett, 2012, 535(7):75-79.
    [24]
    ALEJANDRO M, THANH-THAI T T, FANOR M, THANH N. T. CO desorption from oxygen species on carbonaceous surface:1. Effects of the local structure of the active site and the surface coverage[J]. J Phys Chem A, 2001, 105(27):6757-6764. doi: 10.1021/jp010572l
    [25]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, et al. Gaussian09, revision E. 01[J]. Gaussian Inc., Wallingford, CT, 2009. http://www.docin.com/p-1716228155.html
    [26]
    ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015, 82:312-21. doi: 10.1016/j.energy.2015.01.040
    [27]
    ALI M A, RAJAKUMAR B. Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory[J]. Comput Theor Chem, 2011, 964:283-290. doi: 10.1016/j.comptc.2011.01.013
    [28]
    PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms[J]. Fuel, 2007, 86:41-49. doi: 10.1016/j.fuel.2006.07.002
    [29]
    PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. Heterogeneous reduction of nitric oxide on synthetic coal chars[J]. Fuel, 2005, 84:2275-2279. doi: 10.1016/j.fuel.2005.06.003
    [30]
    GAO Z Y, LV S K, YANG W J, YANG P F, JI S, MENG X X. Quantum chemistry investigation on the reaction mechanism of the elemental mercury, chlorine, bromine and ozone system[J]. J Mol Model, 2015, 21(6):1-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (103) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return