Volume 46 Issue 9
Sep.  2018
Turn off MathJax
Article Contents
HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bao. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1087-1100.
Citation: HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bao. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1087-1100.

Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics

Funds:

the National Natural Science Foundation of China 21273265

the Coal Base Key Technologies R & D Program of Shanxi Province MH2014-13

More Information
  • Corresponding author: LIN Ming-gui, linmg@sxicc.ac.cn; LI De-bao, Tel/Fax: 0351-4040499, E-mail: dbli@sxicc.ac.cn
  • Received Date: 2018-04-17
  • Rev Recd Date: 2018-07-03
  • Available Online: 2021-01-23
  • Publish Date: 2018-09-10
  • The direct, nonoxidative conversion of methane to aromatics and hydrogen is a challenging research topic in the field of C1 chemistry due to the high carbon-atom utilization efficiency, zero CO2 emissions and short process flow. In the present paper, the advance of methane dehydroaromatization (MDA) is reviewed based on the research works of our group and the pertinent literatures from 2013 to 2017. The reaction mechanism and coking formation for the MDA process, the catalyst modification and regeneration, the application of the membrane reactor, as well as the non-Mo-based catalyst system were considered, the future prospect was given for the MDA reaction.
  • loading
  • [1]
    徐奕德, 包信和, 林励吾.甲烷直接催化脱氢转化为芳烃和氢新反应的研究[J].中国科学基金, 2006, 20(3):170-173. doi: 10.3969/j.issn.1000-8217.2006.03.012

    XU Yi-de, BAO Xin-he, LIN Li-wu. Study on a new reaction:The direct conversion of methane to aromatics and hydrogen[J]. Bull Natl Nat Sci Found Chin, 2006, 20(3):170-173. doi: 10.3969/j.issn.1000-8217.2006.03.012
    [2]
    WANG L S, TAO L X, XIE M S, XU G F, HUANG J S, XU Y D. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett, 1993, 21(1/2):35-41. http://cn.bing.com/academic/profile?id=8768e652119f329c9a4b68240c289f9c&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    ISMAGILOV Z R, MATUS E V, TSIKOZA L T. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen:Achievements and perspectives[J]. Energy Environ Sci, 2008, 1(5):526-541. doi: 10.1039/b810981h
    [4]
    SPIVEY J J, HUTCHINGS G. Catalytic aromatization of methane[J]. Chem Soc Rev, 2014, 43(3):792-803. doi: 10.1039/C3CS60259A
    [5]
    XU Y D, BAO X H, LIN L W. Direct conversion of methane under nonoxidative conditions[J]. J Catal, 2003, 216(1/2):386-395. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026070153
    [6]
    OLIVOS-SUAREZ A I, SZECSE NYI À, HENSEN E J M, RUIZ-MARTINEZ J, PIDKO E A, GASCON J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis:Challenges and opportunities[J]. ACS Catal, 2016, 6(5):2965-2981. doi: 10.1021/acscatal.6b00428
    [7]
    SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts:Challenges and prospects[J]. Chem Rev, 2017, 177(13):8497-8520. http://cn.bing.com/academic/profile?id=bf9d61833abb685bcb8b746c56362602&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    MA S Q, GUO X G, ZHAO L X, SCOTT S, BAO X H. Recent progress in methane dehydroaromatization:From laboratory curiosities to promising technology[J]. J Energy Chem, 2013, 22(1):1-20. doi: 10.1016/S2095-4956(13)60001-7
    [9]
    MAJHI S, MOHANTY P, WANG H, PANT K K. Direct conversion of natural gas to higher hydrocarbons:A review[J]. J Energy Chem, 2013, 22(4):543-554. doi: 10.1016/S2095-4956(13)60071-6
    [10]
    魏飞, 魏彤, 黄河, 骞伟中, 汤效平.甲烷无氧芳构化研究进展及其工业应用前景[J].石油加工, 2006, 22(1):1-8. doi: 10.3969/j.issn.1001-8719.2006.01.001

    WEI Fei, WEI Tong, HUANG He, QIAN Wei-zhong, TANG Xiao-ping. Development and industrial application analysis of methane dehydroaromatization[J]. Acta Pet Sin (Pet Process Sect), 2006, 22(1):1-8. doi: 10.3969/j.issn.1001-8719.2006.01.001
    [11]
    SUN K, GINOSAR D, HE T, ZHANG Y, FAN M, CHEN R. Progress in nonoxidative dehydroaromatization of methane in the last 6 years[J]. Ind Eng Chem Res, 2018, 57(6):1768-1789. doi: 10.1021/acs.iecr.7b04707
    [12]
    姚本镇, 陈瑾, 刘殿华, 房鼎业.甲烷无氧芳构化的热力学研究[J].化学世界, 2007, 10:594-597. doi: 10.3969/j.issn.0367-6358.2007.10.005

    YAO Ben-zhen, CHEN Jin, LIU Dian-hua, FANG Ding-ye. Thermodynamic investigation on methane aromatization under nonoxidative condition[J]. Chem World, 2007, 10:594-597. doi: 10.3969/j.issn.0367-6358.2007.10.005
    [13]
    王涛, 刘志玲, 张菊, 张媛, 张伟, 卢永斌.甲烷无氧芳构化反应最新研究进展[J].天然气化工-C1化学与化工, 2018, 43(2):127-134. http://d.old.wanfangdata.com.cn/Periodical/hxgcs200604014

    WANG Tao, LIU Zhi-ling, ZHANG Ju, ZHANG Yuan, ZHANG Wei, LU Yong-bin. New advances in methane nonoxidative aromatization[J]. Nat Gas Chem Ind, 2018, 43(2):127-134. http://d.old.wanfangdata.com.cn/Periodical/hxgcs200604014
    [14]
    WANG D, LUNSFORD J, ROSYNEK M. Catalytic conversion of methane to benzene over Mo/ZSM-5[J]. Top Catal, 1996, 3(3/4):289-297. http://cn.bing.com/academic/profile?id=5c4e03cd0ff3ce7aa3a719613e844dce&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    GONA ÁLEZ I L, ORD R, ROVEZZI M, GLATZEL P, BOTCHWAY S W, WECKHUYSEN B M, BEALE A M. Molybdenum speciation and its impact on catalytic activity during methane dehydroaromatization in zeolite ZSM-5 as revealed by operando X-Ray methods[J]. Angew Chem Int Ed, 2016, 55(17):5215-5219. doi: 10.1002/anie.201601357
    [16]
    VOLLMER I, LINDEN B, OULD-CHIKH S, AGUILAR-TAPIA A, YARULINA I, ABOU-HAMAD E, SNEIDER Y, SUAREZ A, HAZEMANN J, KAPTEIJN F, GASCON J. On the dynamic nature of Mo sites for methane dehydroaromatization[J]. Chem Sci, 2018, 9(21):4801-4807. doi: 10.1039/C8SC01263F
    [17]
    YIN F, LI M R, WANG G C. Periodic density functional theory analysis of direct methane conversion into ethylene and aromatic hydrocarbons catalyzed by Mo4C2/ZSM-5[J]. Phys Chem Chem Phys, 2017, 19(33):22243-22255. doi: 10.1039/C7CP03440G
    [18]
    MA D, SHU Y Y, CHENG M J, XU Y D, BAO X H. On the induction period of methane aromatization over Mo-based catalysts[J]. J Catal, 2000, 194(1):105-114. doi: 10.1006/jcat.2000.2908
    [19]
    WECKHUYSEN B M, ROSYNEK M P, LUNSFORD J H. Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts[J]. Catal Lett, 1998, 52(1/2):31-36. doi: 10.1023/A:1019094630691
    [20]
    KOSINOV N, COUMANS F J A G, USLAMIN E A, WIJPKEMA A S G, MEZARI B, HENSEN E J M. Methane dehydroaromatization by Mo/HZSM-5:Mono-or bifunctional catalysis[J]. ACS Catal, 2017, 7(1):520-529. doi: 10.1021/acscatal.6b02497
    [21]
    KOSINOV N, WIJPKEMA A S G, USLAMIN E, ROHLING R, COUMANS F J A G, MEZARI B, PARASTAEV A, PORYVAEV A S, FEDIN M V, PIDKO E A, HENSEN E J M. Confined carbon mediates dehydroaromatization of methane over Mo/ZSM-5[J]. Angew Chem Int Ed, 2018, 57(4):1016-1020. doi: 10.1002/anie.201711098
    [22]
    MA D, WANG D Z, SU L L, SHU Y Y, XU Y D, BAO X H. Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization:A TP technique investigation[J]. J Catal, 2002, 208(2):260-269. doi: 10.1006/jcat.2002.3540
    [23]
    LIU H M, SU L L, WANG H X, SHEN W J, BAO X H, XU Y D. The chemical nature of carbonaceous deposits and their role in methane dehydroaromatization on Mo/MCM-22 catalysts[J]. Appl Catal A:Gen, 2002, 236:263-280. doi: 10.1016/S0926-860X(02)00293-4
    [24]
    TEMPELMAN C H L, HENSEN E J M. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction[J]. Appl Catal B:Environ, 2015, 176-177:731-739. doi: 10.1016/j.apcatb.2015.04.052
    [25]
    SONG Y, XU Y B, SUZUKI Y, NAKAGOME H, ZHANG Z G. A clue to exploration of the pathway of coke formation on Mo/HZSM-5 catalyst in the non-oxidative methane dehydroaromatization at 1073 K[J]. Appl Catal A:Gen, 2014, 482:387-396. doi: 10.1016/j.apcata.2014.06.018
    [26]
    SONG Y, XU Y B, SUZUKI Y, NAKAGOME H, MA X X, ZHANG Z G. The distribution of coke formed over a multilayer Mo/HZSM-5 fixed bed in H2 co-fed methane aromatization at 1073 K:Exploration of the coking pathway[J]. J Catal, 2015, 330:261-272. doi: 10.1016/j.jcat.2015.07.017
    [27]
    XU Y B, SONG Y, SUZUKI Y, ZHANG Z G. Effect of superficial velocity on the coking behavior of a nanozeolite-based Mo/HZSM-5 catalyst in the non-oxidative CH4 dehydroaromatization at 1073 K[J]. Catal Sci Technol, 2013, 3(10):2769-2777. doi: 10.1039/c3cy00320e
    [28]
    赵珂珂, 黄鑫, 贾丽涛, 侯博, 李德宝. W掺杂对Mo/HZSM-5催化甲烷无氧芳构化性能的影响[J].燃料化学学报, 2017, 45(11):1384-1391. doi: 10.3969/j.issn.0253-2409.2017.11.014

    ZHAO Ke-ke, HUANG Xin, JIA Li-tao, HOU Bo, LI De-bao. Effect of W addition on the catalytic properties of Mo/HZSM-5 catalyst in methane non-oxidative dehydroaromatization[J]. J Fuel Chem Technol, 2017, 45(11):1384-1391. doi: 10.3969/j.issn.0253-2409.2017.11.014
    [29]
    胥月兵, 陆江银, 王吉德, 张战国. Mo基分子筛催化剂及甲烷无氧芳构化[J].化学进展, 2011, 23(1):90-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100038203

    XU Yue-bing, LU Jiang-yin, WANG Ji-de, ZHANG Zhan-guo. Mo-based zeolite catalysts and oxygen-free methane aromatization[J]. Prog Chem, 2011, 23(1):90-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100038203
    [30]
    马记源, 陆江银, 袁钊, 王春晓. Co改性Mo/HZSM-5催化剂的甲烷无氧芳构化催化性能研究[J].石油炼制与化工, 2013, 44(11):29-34. doi: 10.3969/j.issn.1005-2399.2013.11.006

    MA Ji-yuan, LU Jiang-yin, YUAN Zhao, WANG Chun-xiao. Methane dehydroaromatization over cobalt modified Mo/HZSM-5 catalysis in absence of oxidants[J]. Pet Process Petrochem, 2013, 44(11):29-34. doi: 10.3969/j.issn.1005-2399.2013.11.006
    [31]
    FILA V, BERNAUER M, BERNAUER B, SOBALIK Z. Effect of addition of a second metal in Mo/ZSM-5 catalyst for methane aromatization reaction under elevated pressures[J]. Catal Today, 2015, 256:269-275. doi: 10.1016/j.cattod.2015.02.035
    [32]
    马记源, 张航飞, 尹金莲, 周蓉, 陆江银. Ni改性Mo-Co/HZSM-5催化剂在甲烷无氧芳构化中的研究[J].天然气化工(C1化学与化工), 2016, 41(2):19-24. doi: 10.3969/j.issn.1001-9219.2016.02.005

    MA Ji-yuan, ZHANG Hang-fei, YIN Jin-lian, ZHOU Rong, LU Jiang-yin. Methane dehydroaromatization over Ni modified Mo-Co/HZSM-5 catalysts[J]. Nat Gas Chem Ind, 2016, 41(2):19-24. doi: 10.3969/j.issn.1001-9219.2016.02.005
    [33]
    TSHABALALA T E, COVILLE N J, ANDERSON J A, SCURREL M S. Dehydroaromaticzation of methane over Sn-Pt modified Mo/H-ZSM-5 zeolite catalysts:Effect of preparation method[J]. Appl Catal A:Gen, 2015, 503:218-226. doi: 10.1016/j.apcata.2015.06.035
    [34]
    TSHABALALA T E, COVILLE N J, SCURREL M S. Dehydroaromatization of methane over doped Pt/Mo/H-ZSM-5 zeolite catalysts:The promotional effect of tin[J]. Appl Catal A:Gen, 2014, 485:238-244. doi: 10.1016/j.apcata.2014.07.022
    [35]
    ABDELSAYED V, SHEKHAWAT D, SMITH M W. Effect of Fe and Zn promoters on Mo/HZSM-5 catalyst for methane dehydroaromatization[J]. Fuel, 2015, 139:401-410. doi: 10.1016/j.fuel.2014.08.064
    [36]
    CHENG X, YAN P, ZHANG X Z, YANG F, DAI C Y, LI D P, MA X X. Enhanced methane dehydroaromatization in the presence of CO2 over Fe-and Mg-modified Mo/ZSM-5[J]. Mol Catal, 2017, 437:114-120. doi: 10.1016/j.mcat.2017.05.011
    [37]
    DING W P, MEITZNER G D, IGLESIA E. The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H-ZSM5[J]. J Catal, 2002, 206(1):14-22. doi: 10.1006/jcat.2001.3457
    [38]
    JIN Z H, SU L, QIN L, LIU Z C, WANG Y D, XIE Z K, WANG X Y. Methane dehydroaromatization by Mo-supported MFI-type zeolite with core-shell structure[J]. Appl Catal A:Gen, 2013, 453:295-301. doi: 10.1016/j.apcata.2012.12.043
    [39]
    TEMPELMAN C H L, RODRIGUE V O D, ECK E R H, MAGUSIN P, HESEN E J M. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization[J]. Microporous Mesoporous Mater, 2015, 203:259-273. doi: 10.1016/j.micromeso.2014.10.020
    [40]
    WU Y Q, LU Z, EMDADI L, OH S C, WANG J, LEI Y, CHEN H Y, TRAN D T, LEE I C, LIU D X. Tuning external surface of unit-cell thick pillared MFI and MWW zeolites by atomic layer deposition and its consequences on acid-catalyzed reactions[J]. J Catal, 2016, 337:177-187. doi: 10.1016/j.jcat.2016.01.031
    [41]
    CHU N B, WANG J Q, ZHANG Y, YANG J H, LU J M, YIN D H. Nestlike hollow hierarchical MCM-22 microspheres:Synthesis and exceptional catalytic properties[J]. Chem Mater, 2010, 22(9):2757-2763. doi: 10.1021/cm903645p
    [42]
    MARTINEZ A, PERIS E. Non-oxidative methane dehydroaromatization on Mo/HZSM-5 catalysts:Tuning the acidic and catalytic properties through partial exchange of zeolite protons with alkali and alkaline-earth cations[J]. Appl Catal A:Gen, 2016, 515:32-44. doi: 10.1016/j.apcata.2016.01.044
    [43]
    TEMPELMAN C H L, PORTILLA M T, ARMERO M E M, MEZARI B, CALUWE N G R, MARTINEZ C, HENSEN E J M. One-pot synthesis of nano-crystalline MCM-22[J]. Microporous Mesoporous Mater, 2016, 220:28-38. doi: 10.1016/j.micromeso.2015.08.018
    [44]
    刘恒, 阚秋斌.介孔材料为硅源合成多级孔Mo/H-IM-5催化剂及其在甲烷无氧芳构化反应中的应用[J].燃料化学学报, 2016, 44(11):1380-1387. doi: 10.3969/j.issn.0253-2409.2016.11.015

    LIU Heng, KAN Qiu-bin. Synthesis of hierarchical Mo/H-IM-5 catalysts by using mesoporous material as the silica source and its application in methane non-oxidative aromatization[J]. J Fuel Chem Technol, 2016, 44(11):1380-1387. doi: 10.3969/j.issn.0253-2409.2016.11.015
    [45]
    YANG J H, CHU J, WANG J Q, YIN D H, LU J M, ZHANG Y. Synthesis and catalytic performance of hierarchical MCM-22 zeolite aggregates with the assistance of carbon particles and fluoride ions[J]. Chin J Catal, 2014, 35(1):49-57. doi: 10.1016/S1872-2067(12)60711-6
    [46]
    HU J, WU S J, LIU H, DING H, LI Z F, GUAN J Q, KAN Q B. Effect of mesopore structure of TNU-9 on methane dehydroaromatization[J]. RSC Adv, 2014, 4(51):26577-26584. doi: 10.1039/c4ra03945a
    [47]
    ZHU P F, YANG G H, SUN J, FAN R G, ZHANG P P, YONEYAMA Y, TSUBAKI N. A hollow Mo/HZSM-5 zeolite capsule catalyst:Preparation and enhanced catalytic properties in methane dehydroaromatization[J]. J Mater Chem A, 2017, 5(18):8599-8607. doi: 10.1039/C7TA02345F
    [48]
    WU Y Q, EMDADI L, WANG Z P, FAN W, LIU D X. Textural and catalytic properties of Mo loaded hierarchical meso-/microporous lamellar MFI and MWW zeolites for direct methane conversion[J]. Appl Catal A:Gen, 2014, 470:344-354. doi: 10.1016/j.apcata.2013.10.053
    [49]
    LIU H M, LI Y, SHEN W J, BAO X H, XU Y D. Methane dehydroaromatization over Mo/HZSM-5 catalysts in the absence of oxygen:Effects of silanation in HZSM-5 zeolite[J]. Catal Today, 2004, 93/95:65-73. doi: 10.1016/j.cattod.2004.05.014
    [50]
    RAMIREZ J P, VERBOEKEND D, BONILLA A, ABELLO S. Hierarchical zeolite catalysts:Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J]. Adv Funct Mater, 2009, 19(24):3972-3979. doi: 10.1002/(ISSN)1616-3028
    [51]
    WU Y Q, EMDADI L, OH S C, SAKBODIN M, LIU D X. Spatial distribution and catalytic performance of metal-acid sites in Mo/MFI catalysts with tunable meso-/microporous lamellar zeolite structures[J]. J Catal, 2015, 323:100-111. doi: 10.1016/j.jcat.2014.12.022
    [52]
    WANG K, HUANG X, LI D B. Hollow ZSM-5 zeolite grass ball catalyst in methane dehydroaromatization:One-step synthesis and the exceptional catalytic performance[J]. Appl Catal A:Gen, 2018, 556:10-19. doi: 10.1016/j.apcata.2018.02.030
    [53]
    KOSINOV N, COUMANS F J A G, LI G, USLAMIN E, MEZARI B, WIJPKEMA A S G, PIDKO E A, HENSEN E J M. Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration[J]. J Catal, 2017, 346:125-133. doi: 10.1016/j.jcat.2016.12.006
    [54]
    GAO J, ZHENG Y T, JEHNG J M, TANG Y D, WACHS I E, PODKOLZIN S G. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion[J]. Science, 2015, 348(6235):686-690. doi: 10.1126/science.aaa7048
    [55]
    PORTILLA M T, LLOPIS F J, MARTINEZ C. Non-oxidative dehydroaromatization of methane:An effective reaction-regeneration cyclic operation for catalyst life extension[J]. Catal Sci Technol, 2015, 5(7):3806-3821. doi: 10.1039/C5CY00356C
    [56]
    KOSINOV N, COUMANS F J A G, ULSAMIN E, KAPTEIJIN F, HENSEN E J M. Selective coke combustion by oxygen pulsing during Mo/ZSM-5-Catalyzed methane dehydroaromatization[J]. Angew Chem Int Ed, 2016, 55(48):15086-15090. doi: 10.1002/anie.201609442
    [57]
    SUN C Y, FANG G Z, GUO X G, HU Y L, MA S Q, YANG T H, HAN J, MA H, TAN D L, BAO X H. Methane dehydroaromatization with periodic CH4-H2 switch:A promising process for aromatics and hydrogen[J]. J Energy Chem, 2015, 24(3):257-263. doi: 10.1016/S2095-4956(15)60309-6
    [58]
    XU Y B, LU J Y, SUZUKI Y, ZHANG Z G, MA H T, YAMAMOTO Y. Performance of a binder-free, spherical-shaped Mo/HZSM-5 catalyst in the non-oxidative CH4 dehydroaromatization in fixed-and fluidized-bed reactors under periodic CH4-H2 switch operation[J]. Chem Eng Process:Process Intensif, 2013, 72:90-102. doi: 10.1016/j.cep.2013.05.016
    [59]
    PEREZ-URESTI S, ADRIAN-MENDIOLA J, El-HALWAGI M. Techno-Economic assessment of benzene production from shale gas[J]. Processes, 2017, 5(33):1-10.
    [60]
    XU Y, WANG J, SUZUKI Y, ZHANG Z. Improving effect of Fe additive on the catalytic stability of Mo/HZSM-5 in the methane dehydroaromatization[J]. Catal Today, 2012, 185(1):41-46. doi: 10.1016/j.cattod.2011.09.026
    [61]
    XU Y, LU J, WANG J, SUZUKI Y, ZHANG Z. The catalytic stability of Mo/HZSM-5 in methane dehydroaromatization at severe and periodic CH4-H2 switch operating conditions[J]. Chem Eng J, 2011, 168(1):390-402. doi: 10.1016/j.cej.2011.01.047
    [62]
    XU Y, WANG J, SUZUKI Y, ZHANG Z. Effect of transition metal additives on the catalytic stability of Mo/HZSM-5 in the methane dehydroaromatization under periodic CH4-H2 switch operation at 1073 K[J]. Appl Catal A:Gen, 2011, 409/410:181-193. doi: 10.1016/j.apcata.2011.10.003
    [63]
    XU Y B, SUZUKI Y, ZHANG Z G. Comparison of the activity stabilities of nanosized and microsized zeolites based Fe-Mo/HZSM-5 catalysts in the non-oxidative CH4 dehydroaromatization under periodic CH4-H2 switching operation at 1073 K[J]. Appl Catal A:Gen, 2013, 452:105-116. doi: 10.1016/j.apcata.2012.11.027
    [64]
    XU Y B, SONG Y, SUZUKI Y, ZHANG Z G. Mechanism of Fe additive improving the activity stability of microzeolite-based Mo/HZSM-5 catalyst in non-oxidative methane dehydroaromatization at 1073 K under periodic CH4-H2 switching modes[J]. Catal Sci Technol, 2014, 4(10):3644-3656. doi: 10.1039/C4CY00613E
    [65]
    SONG Y, ZHANG Q, XU Y B, ZHANG Y, MATSUOKA K, ZHANG Z G. Coke accumulation and deactivation behavior of microzeolite-based Mo/HZSM-5 in the nonoxidative methane aromatization under cyclic CH4-H2 feed switch mode[J]. Appl Catal A:Gen, 2017, 530:12-20. doi: 10.1016/j.apcata.2016.11.016
    [66]
    NATESAKHAWAT S, MEANS N C, HOWARD B H, ABDELSAYED V, BALTRUS J P, CHENG Y, LEKSE J W, LINK D, MORREALE B D. Improved benzene production from methane dehydroaromatization over Mo/HZSM-5 catalysts via hydrogen-permselective palladium membrane reactors[J]. Catal Sci Technol, 2015, 5(11):5023-5036. doi: 10.1039/C5CY00934K
    [67]
    XUE J, CHEN Y, WEI Y Y, FELDHOFF A, WANG H H, CARO J. Gas to liquids:Natural gas conversion to aromatic fuels and chemicals in a hydrogen-permeable ceramic hollow fiber membrane reactor[J]. ACS Catal, 2016, 6(4):2448-2451. doi: 10.1021/acscatal.6b00004
    [68]
    CAO Z W, JIANG H Q, LUO H X, BAUMANN S, MEULENBERG W A, ASSMANN J, MLECZKO L, LIU Y, CARO J. Natural gas to fuels and chemicals:Improved methane aromatization in an oxygen-permeable membrane reactor[J]. Angew Chem Int Ed, 2013, 52(51):13794-13797. doi: 10.1002/anie.201307935
    [69]
    MOREJUDO S H, ZANON R, ESCOLASTICO S, YUSTE I, MALEROD H, VESTRE P K, COORS W G, MARTINEZ A, NORBY T, SERRA J M, KJOLSETH C. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor[J]. Science, 2016, 353(6299):563-566. doi: 10.1126/science.aag0274
    [70]
    ABDELSAYED V, SMITH M W, SHEKHAWAT D. Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization[J]. Appl Catal A:Gen, 2015, 505:365-374. doi: 10.1016/j.apcata.2015.08.017
    [71]
    GIM M Y, HAN S J, KANG T H, SONG J H, KIM T H, KIM D H, LEE K Y, SONG I K. Benzene, toluene, and xylene production by direct dehydroaromatization of methane over WOy/HZSM-5 catalysts[J]. J Nanosci Nanotechnol, 2017, 17(11):8226-8231. doi: 10.1166/jnn.2017.15095
    [72]
    TSHABALALA T E, COVILLE N J, SCURELL M S. Methane dehydroaromatization over modified Mn/H-ZSM-5 zeolite catalysts:Effect of tungsten as a secondary metal[J]. Catal Commun, 2016, 78:37-43. doi: 10.1016/j.catcom.2016.02.005
    [73]
    DUTTA K, LI L, GUPTA P, GUTIERREZ D P, KOPYSCINSKI J. Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor[J]. Catal Commun, 2018, 106:16-19. doi: 10.1016/j.catcom.2017.12.005
    [74]
    TAN P L. Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane[J]. J Catal, 2016, 338:21-29. doi: 10.1016/j.jcat.2016.01.027
    [75]
    LAI Y, VESER G. The nature of the selective species in Fe-HZSM-5 for non-oxidative methane dehydroaromatization[J]. Catal Sci Technol, 2016, 6(14):5440-5452. doi: 10.1039/C5CY02258D
    [76]
    GUO X G, FANG G Z, LI G, MA H, FAN H J, YU L, MA C, WU X, DENG D H, WEI M M, TAN D L, SI R, ZHANG S, LI J Q, SUN L T, TANG Z C, PAN X L, BAO X H. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184):616-619. doi: 10.1126/science.1253150
    [77]
    SAKBODIN M, WU Y Q, OH S C, WACHSMAN E D, LIU D X. Hydrogen-permeable tubular membrane reactor:Promoting conversion and product selectivity for non-oxidative activation of methane over an Fe©SiO2 catalyst[J]. Angew Chem Int Ed, 2016, 55(52):16149-16152. doi: 10.1002/anie.201609991
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (307) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return