Volume 46 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
SHI Xun-wang, XIN Xin, LIU Zhao, LU Yao, LI Hong-xia, LI Jian-fen, CHEN Qun-peng. Preparation and characterization of Ni/TPC catalyst and applied in straw pyrolysis gas reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 659-665.
Citation: SHI Xun-wang, XIN Xin, LIU Zhao, LU Yao, LI Hong-xia, LI Jian-fen, CHEN Qun-peng. Preparation and characterization of Ni/TPC catalyst and applied in straw pyrolysis gas reforming[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 659-665.

Preparation and characterization of Ni/TPC catalyst and applied in straw pyrolysis gas reforming

Funds:

the Public Welfare Industry (agriculture) Research Special 201503135

Technological Innovation Major Project of Hubei Province 2017ABA155

More Information
  • Corresponding author: LI Jian-fen, Tel: 027-63374595, E-mail: lijfen@163.com
  • Received Date: 2018-03-06
  • Rev Recd Date: 2018-04-18
  • Available Online: 2021-01-23
  • Publish Date: 2018-06-10
  • Tire pyrolysis char (TPC) was used as a carrier to prepare Ni/TPC catalyst by homogeneous precipitation method. The characteristic of synthetic catalyst was determined by EDX, SEM, XRD, TG and BET. Meanwhile, the performance of Ni/TPC catalyst including reforming temperature, holding time, nickel loading and usage time on the straw pyrolysis gas reforming was investigated in a tube furnace. The results showed that TPC was rich in char and metal. Ni was well loaded on TPC which had a good thermal stability with a specific surface area of 62 m2/g. The Ni/TPC catalyst could obviously improve the burning gas content. The highest catalytic efficiency was obtained at reforming temperature of 750 ℃ and 10 min holding time with 30% Ni loading. The content of H2 in the gas was high and relatively increased by 50% after using the catalyst for 850 min. The Ni3ZnC0.7 active component structure converted to FeNi3 after long-term used with high and stable catalytic activity. TPC had the ability to be a new type of carrier for nickel catalyst.
  • loading
  • [1]
    STIEGEL G J, MAXWELL R C. Gasification technologies:The path to clean, affordable energy in the 21st century[J]. Fuel Process Technol, 2001, 71(1/3):79-97. https://www.deepdyve.com/lp/elsevier/gasification-technologies-the-path-to-clean-affordable-energy-in-the-VjhaZhSPsF
    [2]
    WALTERTORRES, PANSARE S, GOODWINJR J. Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas[J]. Catal Rev, 2007, 49(4):407-456. doi: 10.1080/01614940701375134
    [3]
    NAZEMI M, PADGETT J, HATZELL M C. Acid/base multi-ion exchange membrane-based electrolysis system for water splitting[J]. Energy Technol, 2017.
    [4]
    PALO D R, AND R A D, HOLLADAY J D. Methanol steam reforming for hydrogen production[J]. Chem Rev, 2007, 107(10):3992. doi: 10.1021/cr050198b
    [5]
    BULUSHEV D A, ROSS J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification:A review[J]. Cataly Today, 2011, 171(1):1-13. doi: 10.1016/j.cattod.2011.02.005
    [6]
    GARC A-D EZ E, GARC A-LABIANO F, DIEGO L F D, ABAD A, GAYÁN P, ADÁNEZ J. Autothermal chemical looping reforming process of different fossil liquid fuels[J]. Int J Hydrogen Energy, 2017, 42(19):13633-13640. doi: 10.1016/j.ijhydene.2016.12.109
    [7]
    BRIDGWATER A V. The technical and economic feasibility of biomass gasification for power generation[J]. Fuel, 1995, 74(5):631-653. doi: 10.1016/0016-2361(95)00001-L
    [8]
    HAN J, KIM H. The reduction and control technology of tar during biomass gasification/pyrolysis:An overview[J]. Renewable Sustainable Energy Rev, 2008, 12(2):397-416. doi: 10.1016/j.rser.2006.07.015
    [9]
    HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9):4044-4098. doi: 10.1021/cr068360d
    [10]
    HE M, XIAO B, HU Z, LIU S M, GUO X J, LUO S Y. Syngas production from catalytic gasification of waste polyethylene:Influence of temperature on gas yield and composition[J]. Int J Hydrogen Energy, 2009, 34(3):1342-1348. doi: 10.1016/j.ijhydene.2008.12.023
    [11]
    YU Q Z, BRAGE C, NORDGREEN T, SJÖSTRÖM K. Effects of Chinese dolomites on tar cracking in gasification of birch[J]. Fuel, 2009, 88(10):1922-1926. doi: 10.1016/j.fuel.2009.04.020
    [12]
    FURUSAWA T, TSUTSUMI A. Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification[J]. Appl Catal A:Gen, 2005, 278(2):207-212. doi: 10.1016/j.apcata.2004.09.035
    [13]
    WANG D, YUAN W, JI W. Use of biomass hydrothermal conversion char as the Ni catalyst support in benzene and gasification tar removal[J]. Trans ASABE, 2010, 53(3):795-800. doi: 10.13031/2013.30053
    [14]
    CHOI Y K, CHO M H, KIM J S, LUND H, KAISER M J. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier:Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal[J]. Energy, 2015, 91(suppl 2):160-167.
    [15]
    DUC L D, XIAO X, MORISHITA K, TAKARADA T. Biomass gasification using nickel loaded brown coal char in fluidized bed gasifier at relatively low temperature[J]. J Chem Eng Jpn, 2009, 42(1):51-57. doi: 10.1252/jcej.08we218
    [16]
    WANG T J, CHEN Y WU C Z, FU Y, CHANG J. The steam reforming of naphthalene over a nickel-dolomite cracking catalyst[J]. Biomass Bioenergy, 2005, 28(5):508-514. doi: 10.1016/j.biombioe.2004.11.006
    [17]
    WANG D, YUAN W, JI W. Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning[J]. Appl Energy, 2011, 88(5):1656-1663. doi: 10.1016/j.apenergy.2010.11.041
    [18]
    SHEN Y, ZHAO P, SHAO Q, MA D C, TAKAHASHI F, YOSHIKAWA K. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Appl Catal B:Environ, 2014, s152/153(1):140-151.
    [19]
    MIN Z, ASADULLAH M, YIMSIRI P, SHU Z, WU H W, CHUN Z L. Catalytic reforming of tar during gasification. Part Ⅰ. Steam reforming of biomass tar using ilmenite as a catalyst[J]. Fuel, 2011, 90(5):1847-1854. doi: 10.1016/j.fuel.2010.12.039
    [20]
    ALRAHBI A S, WILLIAMS P T, YAN J. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tire pyrolysis char[J]. Appl Energy, 2017, 190:501-509. doi: 10.1016/j.apenergy.2016.12.099
    [21]
    BAE K W. The role of carbon deposition in the gas phase transesterification of dimethylcarbonate and phenol over TiO2/SiO2 catalyst[J]. Appl Catal A:Gen, 2015, 194(1):403-414. https://www.researchgate.net/publication/225183096_Transesterification_of_Dimethylcarbonate_and_Phenol_Over_Silica_Supported_TiO2_and_Ti-MCM_41_Catalysts_Structure_Insensitivity
    [22]
    QIAN K, KUMAR A. Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst[J]. Fuel, 2017, 187:128-136. doi: 10.1016/j.fuel.2016.09.043
    [23]
    ZHAO Y, LI X, LIU J, WANG C, ZHAO Y. MOF-Derived ZnO/Ni3ZnC0.7/C Hybrids Yolk-Shell microspheres with excellent electrochemical performances for lithium ion batteries[J]. Acs Appl Mater Inter, 2016, 8(10):6472-6480. doi: 10.1021/acsami.5b12562
    [24]
    WANG Y, JIANG L, HU S, SU S, ZHOU Y B, XIANG J, ZHANG S, CHUN Z L. Evolution of structure and activity of char-supported iron catalysts prepared for steam reforming of bio-oil[J]. Fuel Process Technol, 2017, 158:180-190. doi: 10.1016/j.fuproc.2017.01.002
    [25]
    LIU X, XIONG B, HUANG X, DING H R, ZHENGY, LIU Z H, ZHENG C G. Effect of catalysts on char structural evolution during hydrogasification under high pressure[J]. Fuel, 2017, 188(2):474-482. https://www.researchgate.net/publication/309176313_Effect_of_catalysts_on_char_structural_evolution_during_hydrogasification_under_high_pressure
    [26]
    BRIDGWATER A V. Renewable fuels and chemicals by thermal processing of biomass[J]. Chem Eng J, 2003, 91(2):87-102. https://www.deepdyve.com/lp/elsevier/renewable-fuels-and-chemicals-by-thermal-processing-of-biomass-O0l7vwwNq3
    [27]
    BRIDGWATER A, GERHAUSER H, EFFENDI A. Biomass pyrolysis process: Australia, 2074192[P]. 2014-05-07.
    [28]
    NEGRO M J, MANZANARES P, OLIVA J M, BALLESTEROS I, BALLESTEROS M. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment[J]. Biomass Bioenergy, 2003, 25(3):301-308. doi: 10.1016/S0961-9534(03)00017-5
    [29]
    TABA L E, IRFAN M F, WAN A M W D, CHAKRABARTI M H. The effect of temperature on various parameters in coal, biomass and CO-gasification:A review[J]. Renewable Sustainable Energy Rev, 2012, 16(8):5584-5596. doi: 10.1016/j.rser.2012.06.015
    [30]
    ANTONAKOU E, DIMITROPOULOS V, LAPPAS A. Production and characterization of bio-oil from catalytic biomass pyrolysis[J]. Therm Sci, 2014, 10(3):151-160.
    [31]
    DONALD J, XU C, HASHIMOTO H, BYAMBAJAV E, OHTSUKA Y. Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere[J]. Appl Catal A:Gen, 2010, 375(1):124-133. doi: 10.1016/j.apcata.2009.12.030
    [32]
    ARKATOVA L A. The deposition of coke during carbon dioxide reforming of methane over intermetallides[J]. Catal Today, 2010, 157(1/4):170-176. https://www.deepdyve.com/lp/elsevier/the-deposition-of-coke-from-methane-on-a-ni-mgal-2-o-4-catalyst-qCTK8Ibjae
    [33]
    XU L, SONG H, CHOU L. Carbon dioxide reforming of methane over ordered mesoporous NiO-MgO-Al2O3 composite oxides[J]. Appl Catal B:Environ, 2011, s108/109(6):177-190.
    [34]
    ZHAO B F, ZHANG X D, LEI C, QU R B, MENG G F, YI X L, LI S. Steam reforming of toluene as model compound of biomass pyrolysis tar for hydrogen.[J]. Biomass Bioenergy, 2010, 34(1):140-144. doi: 10.1016/j.biombioe.2009.10.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return