Volume 48 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
LIU Meng-jie, DING Wei, DAI Yong-chuan, ZHAO Yu-zhu, ZHAO Yue, HAO Yuan-chuan. Preparation of Au/β-Mo2C catalyst with high thermal stability and its performance in the reverse water-gas shift[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 349-356.
Citation: LIU Meng-jie, DING Wei, DAI Yong-chuan, ZHAO Yu-zhu, ZHAO Yue, HAO Yuan-chuan. Preparation of Au/β-Mo2C catalyst with high thermal stability and its performance in the reverse water-gas shift[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 349-356.

Preparation of Au/β-Mo2C catalyst with high thermal stability and its performance in the reverse water-gas shift

Funds:

The project was supported by the National Natural Science Foundation of China 21802061

the Doctoral Research Foundation Project of Liaoning Province Department of Science & Technology 20170520440

the Program for Liaoning Innovative and Entrepreneurship Training in University 201810148029

  • Received Date: 2019-12-18
  • Rev Recd Date: 2020-02-16
  • Available Online: 2021-01-23
  • Publish Date: 2020-03-10
  • β-Mo2C support was first prepared by the temperature-programmed carbonization and the Au/β-Mo2C catalysts with different Au loadings were then obtained by using the in -situ precipitation method. The Au/β-Mo2C catalysts were characterized by X-ray diffraction (XRD), scanning transmission electron microscopy (STEM) and nitrogen physisorption; their performance, the thermal stability at the high temperature in particular was then investigated in the reverse water-gas shift (RWGS). The XRD results reveal that the diffraction peaks appeared at 34.44°, 38.02°, 39.44°, 52.12°, 61.53°, 69.62° and 74.65° correspond to the (100), (002), (101), (102), (110), (103) and (200) planes of β-Mo2C, respectively, whereas no characteristic peak of Au species is detected, suggesting the high dispersion of Au nanoparticles on the Au/β-Mo2C catalysts with a low Au loading (0.1%-0.5%). The STEM results illustrate that for the Au/β-Mo2C catalysts with an Au loading of 0.5%-2.0%, gold nanoparticles in the form of atom clusters (about 2 nm) are anchored and uniformly dispersed on the β-Mo2C surface. The nitrogen physisorption results demonstrate that the Au/β-Mo2C catalysts have plenty of mesopores. The catalytic evaluation results indicate that the 0.2%Au/β-Mo2C catalyst exhibits high activity and high selectivity to CO for the RWGS reaction; moreover, after the reaction, the Au nanoparticles are still evenly dispersed and the pore structure remain intact, suggesting that the Au/β-Mo2C catalyst owns excellent performance and high thermal stability in the he reverse water-gas shift at high temperature.
  • loading
  • [1]
    LI F J, DONG S C, LI S T, LI Z H, LI Y. Measurement and scenario simulation of effect of urbanization on region CO2 emission based on UES-SD model:A case study in Liaoning Province, China[J]. Chin Geogr Sci, 2015, 25(3):350-360. doi: 10.1007/s11769-014-0729-7
    [2]
    WANG X X, JIANG D B, LANG X M. Climatechange of 4℃ global warming above pre-industrial levels[J]. Adv Atmos Sci, 2018, 35(7):757-770. doi: 10.1007/s00376-018-7160-4
    [3]
    KEDIA S. Approaches to low carbon development in China and India[J]. Adv Clim Change Res, 2016, 7:213-221. doi: 10.1016/j.accre.2016.11.001
    [4]
    SU X, YANG X L, ZHAO B, HUANG Y Q. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts:Recent advances and the future directions[J]. J Energy Chem, 2017, 26:854-867. doi: 10.1016/j.jechem.2017.07.006
    [5]
    POROSOFF M D, YANG X F, BOSCOBOINIK J A, CHEN J G G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angew, 2014, 53(26):6705-6709. doi: 10.1002/anie.201404109
    [6]
    SAGAWA T. Conversion of CO2 to useful substances with composite iron, nickel, and copper catalysts[J]. J Zhejiang Univ-Sci A, 2018, 19(1):80-85. doi: 10.1631/jzus.A1700056
    [7]
    ÁLVAREZ GALVÁN C, SCHUMANN J, BEHRENS, M, FIERRO J L G, SCHLÖGL R, FREI E. Reverse water-gas shift reaction at the Cu/ZnO interface:Influence of the Cu/Zn ratio on structure-activity correlations[J]. Appl Catal B:Environ, 2016, 195:104-111. doi: 10.1016/j.apcatb.2016.05.007
    [8]
    DUKE A S, XIE K, BRANDT A J, MADDUMAPATABANDI T D, AMMAL S C, HEYDEN A, MONNIER J R, CHEN D A. Understanding active sites in the water-gas shift reaction for Pt-Re catalysts on titania[J]. ACS Catal, 2017, 7(4):2597-2606. doi: 10.1021/acscatal.7b00086
    [9]
    KATTEL S, YAN B H, CHEN J G G, LIU P. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2:Importance of synergy between Pt and oxide support[J]. J Catal, 2016, 343:115-126 doi: 10.1016/j.jcat.2015.12.019
    [10]
    CHEN X D, SU X, LIANG B L, YANG X L, REN X Y, DUAN H M, HUANG Y Q, ZHANG T. Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO2 catalysts[J]. J Energy Chem, 2016, 25:1051-1057. doi: 10.1016/j.jechem.2016.11.011
    [11]
    ZHU X B, QU X, LI X S, LIU J L, LIU J H, ZHU B, SHI C. Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate[J]. Chin J Catal, 2016, 12(37):2053-2058. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201612002
    [12]
    HE S N, SHAO Z J, SHU Y J, SHI Z P, CAO X M, GAO Q S, HU P J, TANG Y. Enhancing metal-support interactions by molybdenum carbide:an efficient strategy toward the chemoselective hydrogenation of α, β-unsaturated Aldehydes[J]. Chem-Eur J, 2016, 16(22):5698-5704. https://www.researchgate.net/publication/296690859_Enhancing_Metal-Support_Interactions_by_Molybdenum_Carbide_An_Efficient_Strategy_toward_the_Chemoselective_Hydrogenation_of_ab-Unsaturated_Aldehydes
    [13]
    赵立红, 闫捷, 房克功, 魏灵朝, 蒋元力, 孙予罕. K含量对纳米K/Fe/β-Mo2C催化剂CO加氢反应性能的影响[J].天然气化工(C1化学与化工), 2014, 39(3):25-29. doi: 10.3969/j.issn.1001-9219.2014.03.006

    ZHAO Li-hong, YAN Jie, FANG Ke-gong, WEI Ling-chao, JIANG Yuan-li, SUN Yu-han. Influence of K content on performance of nano-structured K/Fe/β-Mo2C catalysts in CO hydrogenation[J]. Nat Gas Ind, 2014, 39(3):25-29. doi: 10.3969/j.issn.1001-9219.2014.03.006
    [14]
    POROSOFF M D, BALDWIN J W, PENG X, MPOURMPAKIS G, WILLAUER H D. Potassium promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO[J]. ChemSusChem, 2017, 10(11):2408-2415. doi: 10.1002/cssc.201700412
    [15]
    耿文浩, 刘飞, 韩寒, 肖林飞, 吴伟. N, P掺杂型C@Mo2C催化剂的制备及其催化CO2加氢反应研究[J].燃料化学学报, 2017, 45(4):458-467. doi: 10.3969/j.issn.0253-2409.2017.04.010

    GENG Wen-hao, LIU Fei, HAN Han, XIAO Lin-fen, WU Wei. Synthesis of N, P-doped C@Mo2C catalyst and its application in CO2 hydrogenation[J]. J Fuel Chem Technol, 2017, 45(4):458-467. doi: 10.3969/j.issn.0253-2409.2017.04.010
    [16]
    胡瑞珏, 赵娜娜, 李佳佳, 张幔娣, 李建立, 苏海全, 谷晓俊.不同方法制备的Ni修饰介孔碳负载的β-Mo2C催化CO加氢反应制备混合醇[J].石油学报(石油加工), 2018, 34(4):201-210. http://d.old.wanfangdata.com.cn/Periodical/syxb-syjg201804025

    HU Rui-jue, ZHAO Na-na, LI Jia-jia, ZHANG Man-di, LI Jian-li, SU Hai-quan, GU Xiao-jun.β-Mo2C catalysts supported on Ni modified mesoporous carbon prepared by different methods and their application in CO hydrogenation to synthesize mixed alcohol[J]. Acta Pet Sin (Pet Process Sect), 2018, 34(4):201-210. http://d.old.wanfangdata.com.cn/Periodical/syxb-syjg201804025
    [17]
    赵立红, 闫捷, 魏灵朝, 蒋元力, 房克功, 孙予罕. K改性Ni/β-Mo2C催化剂用于CO加氢反应研究[J].天然气化工(C1化学与化工), 2015, 40(4):23-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqhg201504005

    ZHAO Li-hong, YAN Jie, WEI Ling-chao, JIANG Yuan-li, FANG Ke-gong, SUN Yu-han. Preparation of K doped Ni/β-Mo2C and its performance for CO hydrogenation[J]. Nat Gas Ind, 2015, 40(4):23-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqhg201504005
    [18]
    PERRET N, WANG X D, DELANNOY L, POTVIN C, LOUIS C, KEANE M A. Enhanced selective nitroarene hydrogenation over Au supported on β-Mo2C and β-Mo2C/Al2O3[J]. J Catal, 2012, 286:172-183. doi: 10.1016/j.jcat.2011.10.026
    [19]
    CHENG C, ZHANG X L, FU Z M, YANG Z X. Strong metal-support interactions impart activity in the oxygen reduction reaction:Au monolayer on Mo2C (MXene)[J]. J Phys-Condens Mater, 2018, 30(47):112403-112429. doi: 10.1088/1361-648X/aae7ab
    [20]
    ROOHI P, ALIZADEH R, FATEHIFAR E. Thermodynamic study and methanothermal temperature-programmed reaction synthesis of molybdenum carbide[J]. Int J Miner Metall Mater, 2016. 23(3):339-347. doi: 10.1007/s12613-016-1243-y
    [21]
    KOIZUMI R, OZDEN S, SAMANTA A, ALVES A P P, MISHRA A, YE G, SILVA G G, VAJTAI R, SINGH A K, TIWARY C S, AJAYAN P M. Origami-inspired 3D interconnected molybdenum carbide nanoflakes[J]. Adv Mater Interfaces, 2018, 5(6):1701113-1701120. doi: 10.1002/admi.201701113
    [22]
    BADDOUR F G, ROBERTS E J, TO A T, WANG L, HABAS S E, RUDDY D A, BEDFORD N M, WRIGHT J, NASH C P, SCHAIDLE J A, BRUTCHEY R L, MALMSTADT N. An exceptionally mild and scalable solution-phase synthesis of molybdenum carbide nanoparticles for thermocatalytic CO2 hydrogenation[J]. J Am Chem Soc, 2020, 142(2):1010-1019. doi: 10.1021/jacs.9b11238
    [23]
    DHAS N A, GEDANKEN A. Sonochemical synthesis of molybdenum oxide- and molybdenum carbide-silica nanocomposites[J]. Chem Mater, 1997, 9(12):3144-3154. doi: 10.1021/cm9704488
    [24]
    LL X Y, MA D, CHEN LM, AO X H. Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction[J]. Catal Lett, 2007, 116:63-69 doi: 10.1007/s10562-007-9093-x
    [25]
    WANG T, WANG J, CHEN W, ZHENG X, WANG E. A reusable N-doped-carbon-coated Mo2C composite counter electrode for high-efficiency dye-sensitized solar cells[J]. Chem-Eur J, 2017, 23(68):17311-17317. doi: 10.1002/chem.201703519
    [26]
    MA D. Strong metal-support interaction (SMSI) effect between metal catalysts and carbide supports[J]. Acta Phys-Chim Sin, 2019, 35(8):794-795. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201908003
    [27]
    DUAN X P, TIAN X L, KE J H, YIN YN, ZHENG J W, CHEN J, CAO Zh M, XIE Z X, YUAN YO Z. Size controllable redispersion of sintered Au nanoparticles by using iodohydrocarbon and its implications[J]. Chem Sci, 2016, 5:3181-3187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=22c8c4009639f102690cb76cb06fe881
    [28]
    CHEN X D, SU X, DUAN H M, LIANG B L, HUANG Y Q, ZHANG T. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction:Controlled product selectivity and a mechanism study[J]. Catal Today, 2017, 281:312-318. doi: 10.1016/j.cattod.2016.03.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (394) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return