Volume 44 Issue 4
Apr.  2016
Turn off MathJax
Article Contents
HUO Xiao-dong, WANG Zhi-qing, ZHANG Rong, SONG Shuang-shuang, HUANG Jie-jie, FANG Yi-tian. Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 457-462.
Citation: HUO Xiao-dong, WANG Zhi-qing, ZHANG Rong, SONG Shuang-shuang, HUANG Jie-jie, FANG Yi-tian. Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 457-462.

Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation

More Information
  • Corresponding author: Tel/Fax: 0351-2021137, E-mail: fyt@sxicc.ac.cn.
  • Received Date: 2015-10-09
  • Rev Recd Date: 2015-12-10
  • Available Online: 2021-01-23
  • Publish Date: 2016-04-30
  • A complexes was produced using hexamethylenetetramine(HMT) as the complexing agent of ammonium molybdate, and β-Mo2C was prepared by a simple thermal decomposition of this complexes. And then Ni was introduced and the bimetallic carbide Ni3Mo3N/β-Mo2C was prepared. The as-prepared products were characterized by XRD, low-temperature nitrogen adsorption, SEM, HRTEM, element analysis (EA), and the performances of the prepared catalysts for methanation were investigated. The results showed that the bulk molybdenum carbide exhibited high conversion of CO (xCO), but xCO and selectivity of CH4 (sCH4) on β-Mo2C decreased from 75.93% and 36.79% to 67.41% and 33.54% within 100 h. Thus the catalytic activity was not stable and sCH4 was low. The addition of Ni markedly promoted the catalyst activity and stability, xCO and sCH4 on Ni3Mo3N/β-Mo2C increased from 83.15% and 46.64% to 92.51% and 57.23% within 100h, which should be attributed to the newly produced Ni3Mo3N after Ni addition.
  • loading
  • [1]
    付国忠, 陈超. 我国天然气供需现状及煤制天然气工艺技术和经济性分析[J]. 中外能源, 2010, 15(6): 28-34. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201006010.htm

    FU Guo-zhong, CHEN Chao. NG demand and supply in China and economic and technical analysis of coal gasification technology[J]. Sino-Global Energy, 2010, 15(6): 28-34. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201006010.htm
    [2]
    杨春生. 煤制天然气产业发展前景分析[J]. 中外能源, 2010, 15(7): 35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201007009.htm

    YANG Chun-sheng. Prospects for coal gasification in China[J]. Sino-Global Energy, 2010, 15(7): 35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201007009.htm
    [3]
    路霞, 陈世恒, 王万丽, 马紫峰. CO甲烷化Ni基催化剂的研究进展[J]. 石油化工, 2010, 39(3): 340-345. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201003065.htm

    LU Xia, CHEN Shi-heng, WANG Wan-li, MA Zi-feng. Progress in Ni-based catalysts for CO methanation[J]. Petrochem Technol, 2010, 39(3): 340-345. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201003065.htm
    [4]
    莫欣满, 董新法, 刘其海. 纳米ZrO2负载Ni催化剂催化CO选择性甲烷化[J]. 石油化工, 2008, 37(4): 656-661.

    MO Xin-man, DONG Xin-fa, LIU Qi-hai. Selectivity methanation of CO over Ni-based catalysts supported on nano-Zirconia[J]. Petrochem Technol, 2008, 37(4): 656-661.
    [5]
    罗来涛, 李松军, 邓庚凤. Sm2O3对Ni/sepiolite甲烷化催化剂的影响[J]. 燃料化学学报, 2011, 29(4): 302-304. http://www.cnki.com.cn/Article/CJFDTotal-RLHX200104002.htm

    LUO Lai-tao, LI Song-jun, DENG Geng-feng. Effect of samarium on Ni/sepiolite methanation catalyst[J]. J Fuel Chem Technol, 2011, 29(4): 302-304. http://www.cnki.com.cn/Article/CJFDTotal-RLHX200104002.htm
    [6]
    田大勇, 杨霞, 秦绍东. 载体及助剂对镍基甲烷化催化剂稳定性的影响[J]. 化工进展, 2012, 31(S1): 229-231. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2012S1051.htm

    TIAN Da-yong, YANG Xia, QIN Shao-dong. Effect of supporter and promoter on stability of Ni-based methanation catalysts[J]. Chem Ind Eng Prog, 2012, 31(S1): 229-231. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2012S1051.htm
    [7]
    CHEN J G. Carbide and nitride over layers on early transition metal surface: Preparation, characterization and reactivities[J]. Chem Rev, 1996, 96(4): 1477-1498. doi: 10.1021/cr950232u
    [8]
    RAMANATHAN S, OYAMA S T. New catalysts for hydroprocessing: Transition metal carbides and nitrides[J]. J Phys Chem, 1995, 99(44): 16365-16372. doi: 10.1021/j100044a025
    [9]
    CHOI J S, MAUGE F, PICHON C. Alumina-supported cobalt-molybdenum sulfide modified by tin via surface organometallic chemistry: Application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins[J]. Appl Catal A: Gen, 2004, 267(2): 203-216. https://www.researchgate.net/publication/271041905_Alumina-supported_cobaltmolybdenum_sulfide_modified_by_tin_via_surface_organometallic_chemistry_application_to_the_simultaneous_hydrodesulfurization_of_thiophenic_compounds_and_the_hydrogenation_of_ol
    [10]
    MASHKINA A V. Thiophene hydrogenation to tetrahydrothiophene over tungsten sulfide catalysts[J]. Kinet Catal, 2003, 44(2): 277-282. doi: 10.1023/A:1023316831685
    [11]
    ABE H, BELL A T. Catalytic hydrotreating of Indole, Benzothiophene and Benzofuran over molybdenum nitride[J]. Catal Lett, 1993, 18(3): 1-8. https://www.researchgate.net/publication/226691688_Catalytic_hydrotreating_of_indole_benzothiophene_and_benzofuran_over_Mo2N
    [12]
    SAJKOWSKI D J, OYAMA S T. Catalytic hydrotreating by molybdenum nitrides and molybdenum carbides[J]. Appl Catal A: Gen, 1996, 134(2): 339-349. doi: 10.1016/0926-860X(95)00202-2
    [13]
    OSHIKAWA K, NAGAI M, OMI S. Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS[J]. J Phys Chem B, 2001, 105(38): 9124-9131. doi: 10.1021/jp0111867
    [14]
    WANG D, LUNSFORD J H, ROSYNEK M P. Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene[J]. J Catal, 1997, 169(1): 347-358. doi: 10.1006/jcat.1997.1712
    [15]
    BLEKKAN E, GUONG P H, LEDOUX M J, GUILLE J. Isomerization of n-heptane on an oxygen-modified molybdenum carbide catalyst[J]. Ind Eng Chem Res, 1994, 33(2): 1657-1664. https://www.researchgate.net/publication/231366609_Isomerization_of_n-Heptane_on_an_Oxygen-Modified_Molybdenum_Carbide_Catalyst
    [16]
    PARK H K. A general surface propertiesand reactivity of supported and unsupported molybdenum nitride catalysts[J]. Appl Catal, 1997, 150(1): 21-35. doi: 10.1016/S0926-860X(96)00297-9
    [17]
    KIM D. CoMo bimetallic nitrides catalysts for thiophene HDS[J]. Catal Lett, 1997, 43(1): 91-95.
    [18]
    PAUL A. Thiophene HDS over alumina-supported molybdenum nitride and carbide: Adsorption sites,catalytic activities and nature of the active surface[J]. J Catal, 1996, 164(1): 109-121. doi: 10.1006/jcat.1996.0367
    [19]
    SCHLATTER J C, OYAMA S T. Catalytic behavior of selected transition-metal carbide, nitride and borides in the HDN of quinolin[J]. Ind Eng Chem Res, 1988, 27(9): 1648-1653. doi: 10.1021/ie00081a014
    [20]
    LI S, LEE J S, HYEON T, SUSLICK K S. Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures[J]. Appl Catal A: Gen, 1999, 184(1): 1-9. doi: 10.1016/S0926-860X(99)00044-7
    [21]
    SUNDARAMURTHY V, DALAI A K, ADJAYE J. Comparison of P-containing γ-Al2O3 supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen[J]. Appl Catal A: Gen, 2006, 311(1): 155-163.
    [22]
    JEONG G. HDN of pyridine over molybdenum carbide[J]. J Catal, 1995, 154(1): 33-40. doi: 10.1006/jcat.1995.1143
    [23]
    COLLING C W, THOMPSON L T. The structure and function of supported molybdenum nitride hydrodenitrogenation catalysts[J]. J Catal, 1994, 146(1): 193-203. doi: 10.1016/0021-9517(94)90022-1
    [24]
    MIGA K, STANCZYK K, SAYAG C, BRODZKI D, DJÉGA-MARIADASSOU G. Bifunctional behavior of bulk MoOxNy and nitrided supported NiMo catalyst in hydrodenitrogenation of indole[J]. J Catal, 1999, 183(1): 63-68. doi: 10.1006/jcat.1998.2381
    [25]
    OZKAN U S, ZHANG L, CLARK P A. Performance and postreaction characterization of γ-Mo2N catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions[J]. J Catal, 1997, 172(2): 294-306. doi: 10.1006/jcat.1997.1873
    [26]
    NAGAI M, KURAKAMI T, OMI S. Activity of carbided molybdenum-alumina for CO2 hydrogenation[J]. Catal Today, 1998, 45(1/4): 235-239.
    [27]
    NAGAI M, OSHIKAWA K, KURAKAMI T, MIYAO T, OMI S. Surface properties of carbided molybdenum-alumina and its activity for CO2 hydrogenation[J]. J Catal, 1998, 180(1): 14-23. doi: 10.1006/jcat.1998.2262
    [28]
    LEE J S, YEOM M H, PARK K Y, NAM I S, CHUNG J S, KIM Y G, MOON S H. Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts[J]. J Catal, 1991, 128(1): 126-136. doi: 10.1016/0021-9517(91)90072-C
    [29]
    YANG S, LI C, XU J, XIN Q. In situ probing of surface sites on supported molybdenum nitride catalyst by CO adsorption[J]. Chem Commun, 1997, 127(13): 1247-1248. https://www.researchgate.net/publication/244536725_In_situ_probing_of_surface_sites_on_supported_molybdenum_nitride_catalyst_by_CO_adsorption
    [30]
    AFANASIEV P. New single source route to the molybdenum nitride Mo2N[J]. Inorg Chem, 2002, 41(21): 5317-5319. doi: 10.1021/ic025564d
    [31]
    WANG H M, LI W, ZHANG M H. New approach to the synthesis of bulk and supported bimetallic molybdenum nitrides[J]. Chem Mater, 2005, 17(12): 3262-3267. doi: 10.1021/cm047735d
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (186) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return