Volume 48 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
ZHAO Chun-qiu, LIU Jing-ge, LIU Cheng-wei, ZHANG Cheng-hua, LIU Dan, GUI Jian-zhou. One-step conversion of syngas to hydrocarbons and ethers over ZIF-8 derived ZnO coupling HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 698-703.
Citation: ZHAO Chun-qiu, LIU Jing-ge, LIU Cheng-wei, ZHANG Cheng-hua, LIU Dan, GUI Jian-zhou. One-step conversion of syngas to hydrocarbons and ethers over ZIF-8 derived ZnO coupling HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 698-703.

One-step conversion of syngas to hydrocarbons and ethers over ZIF-8 derived ZnO coupling HZSM-5

Funds:

the National Natural Science Foundation of China 21576211

the National Natural Science Foundation of China 21908164

More Information
  • Corresponding author: ZHANG Cheng-hua.Tel: +86-69667802, E-mail: zhangchh@sxicc.ac.cn; LIU Dan.Tel: +86-22-83955521, E-mail: liudan@tiangong.edu.cn
  • Received Date: 2020-04-07
  • Rev Recd Date: 2020-06-02
  • Available Online: 2021-01-23
  • Publish Date: 2020-06-10
  • Zeolitic imidazolate frameworks (ZIF-8) were synthesized by solvothermal method. Used as precursor, ZIF-8 was decomposed into nanoparticles ZnO at different pyrolysis temperature in air atmosphere. The composition, structure and crystal size of ZnO were characterized by XRD, TEM, XPS, and Raman methods. The ZnO nanoparticles were coupled with HZSM-5 to form bifunctional catalysts. The catalytic performances of bifunctional catalysts in the syngas conversion were investigated in a fixed-bed tubular reactor. The results demonstrate that the pyrolysis temperature has an important influence on the particle size of ZnO. The temperature affects the rate of grain formation. High temperature promotes the aggregation of ZnO. The ZnO grain size by changing the temperature plays a role in changing the product distribution. When the pyrolysis temperature is near or below 450℃, carbon-coated ZnO nanoparticles are obtained, and the ZnO grain size is less than 20 nm. The carbon-coated ZnO coupled with HZSM-5 catalyzes syngas mainly into dimethyl ether (DME). When the temperature is higher than 450℃, pure phase ZnO nanoparticles are obtained, and the ZnO grain size is larger than 20 nm. The pure ZnO coupled with HZSM-5 catalyzes syngas mainly into hydrocarbons. Obviously, the coupling modes of ZnO and HZSM-5 have a significant effect on the product selectivity of bifunctional catalysts.
  • loading
  • [1]
    LIU X L, ZHOU W, YANG Y, CHENG K, KANG J, ZHAG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci, 2018, 9(20):4708-4718. doi: 10.1039/C8SC01597J
    [2]
    SHIKADA T, OHNO Y, OGAWA T, ONO M, MIZUGUCHI M, TOMURA K, FUJIMOTA K. Direct synthesis of dimethyl ether form synthesis gas[J]. Stud Surf Sci Catal, 1998, 119:515-520. doi: 10.1016/S0167-2991(98)80483-7
    [3]
    RAVEENDRA G, LI C, YANG C, MENG F H, LI Z. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 catalysts[J]. New J Chem, 2018, 42(10):4419-4431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e14ee91f96140d237fcefe4dfe58aabe
    [4]
    GENTZEN M, HABICHT W, DORONKIN D E, GRUNWALDT J D, SAUER J, BEHRENS S. Bifunctional hybrid catalysts derived from Cu/Zn-based nanoparticles for single-step dimethyl ether synthesis[J]. Catal Sci Technol, 2015, 6(4):10-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08ace13e95921187c24846964d1116d2
    [5]
    YANG J H, PAN X L, JIAO F, LI J, BAO X H. Direct conversion of syngas to aromatics[J]. Chem Commun, 2017, 53:11146-11149. doi: 10.1039/C7CC04768A
    [6]
    CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2):1-14. https://www.sciencedirect.com/science/article/pii/S2451929417302206
    [7]
    SARAVANAN K, HANM H, TSUBAKI N, JONG WOOK B. Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts[J]. Appl Catal B:Environ, 2017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c5ef8e43bdccfd2ccfa4cec961c21754
    [8]
    CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas to lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016, 55(15):1-5. https://pubmed.ncbi.nlm.nih.gov/26961855/
    [9]
    CHEN H Y, LAU S P, CHEN L, LIN J, HUAN C H A, TAN K L, PAN J S. Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis[J]. Appl Surf Sci, 1999, 152(3/4):193-199. https://www.sciencedirect.com/science/article/abs/pii/S0169433299003177
    [10]
    WILMER H, KURTZ M, KLEMENTIEV K V, TKACHENKO O P, GRVNERT W, HINRICHSEN O, BIRKNERA, RABE S, MERZ K, DRIESS M, WÖLL C, MUHLER M. Methanol synthesis over ZnO:A structure-sensitive reaction?[J]. PCCP, 2003, 5(20):4736-4742. doi: 10.1039/B304425D
    [11]
    NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014, 197:25261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7dd90c7a9b1564bcd09ca55038d7ea55
    [12]
    TAMADDON F, MORADI S. Controllable selectivity in Biginelli and Hantzsch reactions using nanoZnO as a structure base catalyst[J]. J Mol Catal A:Chem, 2013, 370:117-122. doi: 10.1016/j.molcata.2012.12.005
    [13]
    YANG S J, IM J H, KIM T, LEE K, PARK C R. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity[J]. J Hazard Mater, 2011, 186(1):376-382. doi: 10.1016/j.jhazmat.2010.11.019
    [14]
    姚显芳, 李映伟. MOFs作为牺牲模板制备纳米多孔碳材料的方法及其应用[J].中国科学, 2015, 60(20):1906-1914. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201520006

    YAO Xian-fang, LI Ying-wei. Method for preparing nanoporous carbon material by using MOFs as sacrificial template and application[J]. Chin Sci Bull, 2015, 60(20):1906-1914. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201520006
    [15]
    VIETH J K, JANIAK C. MOFs, MILs and more:Concepts, properties and applications for porous coordination networks (PCNs)[J]. Chem Inform, 2010, 34(11):2366-2388. http://cn.bing.com/academic/profile?id=6c2c0580f1cc3c7e38960dcd23b585dd&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    PARK K, NI Z, COTE A, CHOI J Y, HUANG R D, URIBE-ROMO F J, CHAO H K, KEEFFE M, YAGHI O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J].PNAS, 2006, 103(27):10186-10191. doi: 10.1073/pnas.0602439103
    [17]
    BATS N, CHIZALLET C, LAZARE S, BAZER-BACHI D, BONNIER F, LECOCQ V, SOYER E, QUOINEAUD A, BATS N. Catalysis of transesterification by a nonfunctionalized metal-organic framework:Acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations[J]. J Am Chem Soc, 2010, 132(35):12365-12377. doi: 10.1021/ja103365s
    [18]
    LEE J Y, FARHA O K, ROBERTS J, LEE Y, FARHA O K, ROBERTS J, SCHEIDT K A, NGUYEN S T, HUPP J T. Metal-organic framework materials as catalysts[J]. Chem Soc Rev, 2009, 38(5):1450-1459. doi: 10.1039/b807080f
    [19]
    YANG S J, KIM T, IM J H, KIM Y S, LEE K, JUNG H, PARK C R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chem Mater, 2012, 24(3):464-470. doi: 10.1021/cm202554j
    [20]
    ZHENG F, YANG Y, CHEN Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nat Commun, 2014, 5(5):5261-5270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54abef17566b95fef792f68c65a10dd0
    [21]
    SWIATOWSKA-MROWIECKA J, ZANNA S, OGLE K, MARCUS P. Adsorption of 1, 2-diaminoethane on ZnO thin films from p-xylene[J]. Appl Surf Sci, 2008, 254(17):5530-5539. doi: 10.1016/j.apsusc.2008.02.170
    [22]
    JING L Q, XU Z L, SHANG J, SUN X J, CAI W M, GUO H C. The preparation and characterization of ZnO ultrafine particles[J]. Mater Sci Eng A, 2002, (1/2):356-361. doi: 10.1016-S0921-5093(01)01801-9/
    [23]
    ANSARI S A, KHAN M M, KALATHIL S, NISAR A, LEE J, CHO M H. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm[J]. Nanoscale, 2013, 5(19):9238-9246. doi: 10.1039/c3nr02678g
    [24]
    HAN Y Z, QI P F, LI S W, FENG X, ZHOU J W, LI H W, SU S Y, LI X G, WANG B. A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries[J]. Chem Commun, 2014, 50(59):8057-8060. doi: 10.1039/C4CC02691H
    [25]
    CHOI Y, FUTAGAMI K, FUJITANI T, J. NAKAMURA. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model?[J]. Appl Catal A:Gen, 2001, 208(1/2):163-167. https://www.sciencedirect.com/science/article/abs/pii/S0926860X00007122
    [26]
    KURTZ M, STRUNK J, HINRICHSEN O, MUHLER M, FINK K, MEYER B AND WÖLL C. Active sites on oxide surfaces:ZnO-catalyzed synthesis of methanol from CO and H2[J]. Angew Chem Int Ed, 2005, 44:2790-2794. doi: 10.1002/anie.200462374
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return