留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褐煤基多孔炭/CoNi2S4复合材料的制备及电容特性研究

朱俊生 丁晓波 曹景沛 张双全 岳晓明 胡光洲

朱俊生, 丁晓波, 曹景沛, 张双全, 岳晓明, 胡光洲. 褐煤基多孔炭/CoNi2S4复合材料的制备及电容特性研究[J]. 燃料化学学报, 2021, 49(1): 20-26. doi: 10.1016/S1872-5813(21)60006-3
引用本文: 朱俊生, 丁晓波, 曹景沛, 张双全, 岳晓明, 胡光洲. 褐煤基多孔炭/CoNi2S4复合材料的制备及电容特性研究[J]. 燃料化学学报, 2021, 49(1): 20-26. doi: 10.1016/S1872-5813(21)60006-3
ZHU Jun-sheng, DING Xiao-bo, CAO Jing-pei, ZHANG Shuang-quan, YUE Xiao-ming, HU Guang-zhou. Preparation of lignite-based porous carbon/CoNi2S4 composite materials and their capacitance performance[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 20-26. doi: 10.1016/S1872-5813(21)60006-3
Citation: ZHU Jun-sheng, DING Xiao-bo, CAO Jing-pei, ZHANG Shuang-quan, YUE Xiao-ming, HU Guang-zhou. Preparation of lignite-based porous carbon/CoNi2S4 composite materials and their capacitance performance[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 20-26. doi: 10.1016/S1872-5813(21)60006-3

褐煤基多孔炭/CoNi2S4复合材料的制备及电容特性研究

doi: 10.1016/S1872-5813(21)60006-3
基金项目: 徐州市科技项目(KC19054)资助
详细信息
    通讯作者:

    E-mail: zhujschina@163.com

  • 中图分类号: TQ530

Preparation of lignite-based porous carbon/CoNi2S4 composite materials and their capacitance performance

Funds: The project was supported by the Science and Technology Projects of Xuzhou City, China (KC19054)
More Information
  • 摘要: 以宝清褐煤为原料,使用KOH溶液萃取、活化后制得煤基多孔炭,并利用简单的水热法将褐煤基多孔碳与CoNi2S4复合,制备复合电容电极材料。考察了不同碳添加量对褐煤基多孔碳/CoNi2S4复合材料电化学性能的影响,结果表明,碳添加量过高或过低都不利于复合材料比电容的提升,而碳添加量为37%的褐煤基多孔碳/CoNi2S4复合材料具有较高的比电容和良好的循环性能,该复合电极在4 A/g电流密度下,比电容达到1318.2 F/g,在4000次充放电循环后电容保持率为80.9%。
  • 图  1  PC/CoNi2S4-6的XRD谱图

    Figure  1  XRD patterns of PC/CoNi2S4-6

    图  2  PC/ CoNi2S4-6的XPS谱图

    Figure  2  XPS spectra of PC/ CoNi2S4-6

    (a): survey spectrum; (b): S 2p; (c): Ni 2p; (d): Co 2p

    图  3  PC和PC/CoNi2S4-6的SEM照片

    Figure  3  SEM images of PC and PC/CoNi2S4-6

    (a): PC; (b): PC/CoNi2S4-6

    图  4  CoNi2S4、PC/CoNi2S4-2、PC/CoNi2S4-4、PC/CoNi2S4-6和PC/CoNi2S4-8的CV曲线图

    Figure  4  CV curves of CoNi2S4, PC/CoNi2S4-2, PC/CoNi2S4-4, PC/CoNi2S4-6 and PC/CoNi2S4-8

    图  5  PC/CoNi2S4-6的循环伏安曲线

    Figure  5  CV curves of PC/CoNi2S4-6

    图  6  CoNi2S4(a)、PC/CoNi2S4-2(b)、PC/CoNi2S4-4(c)、PC/CoNi2S4-6(d)和PC/CoNi2S4-8(e)在不同电流密度下的GCD曲线图;CoNi2S4、PC/CoNi2S4-2、PC/CoNi2S4-4、PC/CoNi2S4-6、PC/CoNi2S4-8的倍率性能图(f)

    Figure  6  GCD curves of CoNi2S4 (a) , PC/CoNi2S4-2 (b), PC/CoNi2S4-4 (c), PC/CoNi2S4-6 (d) and PC/CoNi2S4-8 (e) at various current densities; Specific capacitances of CoNi2S4, PC/CoNi2S4-2, PC/CoNi2S4-4, PC/CoNi2S4-6, PC/CoNi2S4-8 at various current densities (f)

    图  7  (a) CoNi2S4、PC/CoNi2S4-2、PC/CoNi2S4-4、PC/CoNi2S4-6和PC/CoNi2S4-8的能奎斯特图;(b) 等效电路图及拟合结果

    Figure  7  (a) Nyquist plots of CoNi2S4, PC/CoNi2S4-2, PC/CoNi2S4-4, PC/CoNi2S4-6, PC/CoNi2S4-8; (b) the equivalent circuit and kinetic parameters

    图  8  PC/CoNi2S4-6在4 A/g电流密度下的循环性能图,插图为PC/CoNi2S4-6连续10次循环充放电的GCD曲线

    Figure  8  Cycling performance of PC/CoNi2S4-6 at a current density of 4 A/g, the insert shows the GCD curves of PC/CoNi2S4-6 for 10 consecutive cycles

    表  1  宝清褐煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of Baoqing lignite

    Proximate analysis w/%Ultimate analysis w/%
    MadAdVdafFCdafCdafNdafHdaf${\rm{O}}_{{\rm{daf}}}^{\rm{*}} $St,daf
    10.329.6363.6236.3860.470.585.8032.360.79
    *:by difference
    下载: 导出CSV
  • [1] SARAVANAKUMAR T, SELVARAJU T, BHOJANAA KB, RAMESH M, PANDIKUMAR A, AKILAN R, SHANKAR R, BASH SJ S. Exploring the synergistic effect of NixSn2xS4x thiospinel with MWCNTs for enhanced performance in dye-sensitized solar cells, the hydrogen evolution reaction, and supercapacitors[J]. Dalton Trans,2020,49:5336−5351. doi: 10.1039/D0DT00839G
    [2] AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environ Sci,2014,7(5):1597−1614. doi: 10.1039/c3ee44164d
    [3] CHEN L, LIAN C, JIANG H, CHEN L, YAN J, LIU H, LI C. Dual-conductive N,S co-doped carbon nanoflowers for high-loading quasi-solid-state supercapacitor[J]. Chem Eng Sci,2020,217:115496. doi: 10.1016/j.ces.2020.115496
    [4] DING X, ZHU J, HU G, ZHANG S. Core-shell structured CoNi2S4@polydopamine nanocomposites as advanced electrode materials for supercapacitors[J]. Ionics,2019,25(2):897−901. doi: 10.1007/s11581-018-2798-6
    [5] DU W, ZHU Z, WANG Y, LIU J, YANG W, QIAN X, PANG H. One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes[J]. RSC Adv,2014,4(14):6998−7002. doi: 10.1039/c3ra46805d
    [6] GAO R, ZHANG Q, SOYEKWO F, LIN C, LV R, QU Y, CHEN M, ZHU A, LIU Q. Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties[J]. Electrochim Acta,2017,237:94−101. doi: 10.1016/j.electacta.2017.03.214
    [7] YANG Y, ZHANG Y, ZHU C, XIE Y, LV L, CHEN W, HE Y, HU Z. Synthesis of ultrafine CoNi2S4 nanowire on carbon cloth as an efficient positive electrode material for high-performance hybrid supercapacitors[J]. J Alloy Compd,2020,823:153885. doi: 10.1016/j.jallcom.2020.153885
    [8] DU W, WANG Z, ZHU Z, HU S, ZHU X, SHI Y, PANG H, QIAN X. Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes[J]. J Mater Chem A,2014,2(25):9613−9619. doi: 10.1039/C4TA00414K
    [9] 徐程, 郭超. 褐煤腐植酸的提取技术和应用研究[J]. 广州化工,2015,43(15):41−42. doi: 10.3969/j.issn.1001-9677.2015.15.017

    XU Cheng, GUO Chao. Study on extraction technology and application of humic acid from lignite[J]. Guangzhou Chem Ind,2015,43(15):41−42. doi: 10.3969/j.issn.1001-9677.2015.15.017
    [10] 侯朝霞, 屈晨滢, 李建君. 基于超级电容器的多孔电极材料研究进展[J]. 功能材料,2020,51(2):2032−2038. doi: 10.3969/j.issn.1001-9731.2020.02.006

    HOU Zhao-xia, QU Chen-ying, LI Jian-jun. Research progress of porous electrode materials based on supercapacitors[J]. J Funct Mater,2020,51(2):2032−2038. doi: 10.3969/j.issn.1001-9731.2020.02.006
    [11] WU Y, CAO J, ZHAO X, HAO Z, ZHUANG Q, ZHU J, WANG X, WEI X. Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor[J]. Electrochim Acta,2017,252:397−407. doi: 10.1016/j.electacta.2017.08.176
    [12] XING B, GUO H, CHEN L, CHEN Z, ZHANG C, HUANG G, XIE W, YU J. Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors[J]. Fuel Process Technol,2015,138:734−742. doi: 10.1016/j.fuproc.2015.07.017
    [13] 邢宝林, 黄光许, 谌伦建, 张传祥, 王力. 高品质低阶煤基活性炭的制备与表征[J]. 煤炭学报,2013,38:217−222.

    XING Bao-lin, HUANG Guang-xu, CHEN Lun-jian, ZHANG Chuan-xiang, WANG Li. Preparation and characterization of high quality low-rank coal based activated carbon[J]. J China Coal Soc,2013,38:217−222.
    [14] 张高峰, 张治国, 高艳芳, 刘进荣. 煤基活性炭的制备及其作为超级电容器电极材料的研究[J]. 内蒙古工业大学学报,2014,33(4):273−277.

    ZHANG Gao-feng, ZHANG Zhi-guo, GAO Yan-fang, LIU Jin-rong. Preparation and research of coal-based active carbon as a supercapacitor electrode material[J]. J Inner Mongolia Univ Technol,2014,33(4):273−277.
    [15] 周娴娴, 曲旋, 张荣, 毕继诚. 超临界水中煤基多孔碳孔隙形成过程的研究[J]. 燃料化学学报,2015,43(9):1025−1031. doi: 10.3969/j.issn.0253-2409.2015.09.001

    ZHOU Xian-xian, QU Xuan, ZHANG Rong, Bi Ji-cheng. Pore evolution of coal based porous carbon in supercritical water[J]. J Fuel Chem Technol,2015,43(9):1025−1031. doi: 10.3969/j.issn.0253-2409.2015.09.001
    [16] 杨晓霞, 李博, 李文超, 李家乐, 廖语晨. 煤基多孔碳的制备及其对对硝基苯酚吸附性能的研究[J]. 延安大学学报(自然科学版),2020,39(2):49−52.

    YANG Xiao-xia, LI Bo, LI Wen-chao, LI Jia-le, LIAO Yu-chen. Preparation of coal-based porous carbon and its adsorption of p-nitrophenol[J]. J Yanan Univ (Nat Sci Ed),2020,39(2):49−52.
    [17] PATIL S J, KIM J H, LEE D W. Self-assembled Ni3S2//CoNi2S4 nanoarrays for ultra high-performance supercapacitor[J]. Chem Eng J,2017,322:498−509. doi: 10.1016/j.cej.2017.03.095
    [18] GAO Z, CHEN C, CHANG J, CHEN L, WANG P, WU D, XU F, GUO Y, JIANG K. Enhanced cycleability of faradic CoNi2S4 electrode by reduced graphene oxide coating for efficient asymmetric supercapacitor[J]. Electrochim Acta,2018,281:394−404. doi: 10.1016/j.electacta.2018.05.194
    [19] RAJESH J, PARK J, QUY V, KWON J, CHAE J, KANG S, KIM H, AHN K. Rambutan-like cobalt nickel sulfide (CoNi2S4) hierarchitecture for high-performance symmetric aqueous supercapacitors[J]. J Ind Eng Chem,2018,63:73−83. doi: 10.1016/j.jiec.2018.02.001
    [20] XU J, YANG Y, CHU H, TANG J, GE Y, SHEN J, YE M. Novel NiCo2S4@reduced graphene oxide@carbon nanotube nanocomposites for high performance supercapacitors[J]. RSC Adv,2016,6(102):100504−100510. doi: 10.1039/C6RA18732C
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  6
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-02
  • 修回日期:  2020-10-07
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回