留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZSM-5分子筛水蒸气选择性脱铝及其对乙醇转化制丙烯的影响

薛彦峰 牛宇岚 郑洪岩 崔晓静 马庆国 唐建可 丁莉峰

薛彦峰, 牛宇岚, 郑洪岩, 崔晓静, 马庆国, 唐建可, 丁莉峰. ZSM-5分子筛水蒸气选择性脱铝及其对乙醇转化制丙烯的影响[J]. 燃料化学学报, 2021, 49(8): 1111-1121. doi: 10.1016/S1872-5813(21)60064-6
引用本文: 薛彦峰, 牛宇岚, 郑洪岩, 崔晓静, 马庆国, 唐建可, 丁莉峰. ZSM-5分子筛水蒸气选择性脱铝及其对乙醇转化制丙烯的影响[J]. 燃料化学学报, 2021, 49(8): 1111-1121. doi: 10.1016/S1872-5813(21)60064-6
XUE Yan-feng, NIU Yu-lan, ZHENG Hong-yan, CUI Xiao-jing, MA Qing-guo, TANG Jian-ke, DING Li-feng. Selective dealumination of ZSM-5 by steaming and its effect on ethanol to propene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1111-1121. doi: 10.1016/S1872-5813(21)60064-6
Citation: XUE Yan-feng, NIU Yu-lan, ZHENG Hong-yan, CUI Xiao-jing, MA Qing-guo, TANG Jian-ke, DING Li-feng. Selective dealumination of ZSM-5 by steaming and its effect on ethanol to propene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1111-1121. doi: 10.1016/S1872-5813(21)60064-6

ZSM-5分子筛水蒸气选择性脱铝及其对乙醇转化制丙烯的影响

doi: 10.1016/S1872-5813(21)60064-6
基金项目: 国家自然科学基金(22072105),山西省应用基础研究计划项目(201901D111321)和山西省高等学校科技创新项目(2020L0655)资助
详细信息
    通讯作者:

    Tel:0351-3569476,E-mail:xueyf@tit.edu.cn

  • 中图分类号: O643

Selective dealumination of ZSM-5 by steaming and its effect on ethanol to propene

Funds: The project was supported by the National Science Foundation of China (22072105), Natural Science Foundation of Shanxi Province of China (201901D111321), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2020L0655)
  • 摘要: 采用水蒸气对ZSM-5分子筛进行后处理,系统考察了水蒸气处理时间和处理温度对分子筛孔结构、骨架铝分布、酸性及乙醇转化制丙烯的影响。研究结果表明,随着水蒸气处理时间的延长及处理温度的升高,分子筛结晶度和比表面积明显下降。27Al NMR及Co(Ⅱ)交换-ICP结果显示,在水蒸气作用下,分子筛骨架上孤立铝(Alsingle)物种被优先脱除,但临近铝(Alpairs)物种较为稳定。同时,吡啶吸附红外光谱结果显示,在水蒸气作用下,分子筛酸量和酸强度均显著降低。乙醇催化转化结果显示,随着水蒸气处理时间的延长和处理温度的升高,乙烯转化率和烷烃选择性迅速下降,但丙烯和丁烯等高碳烯烃的选择性明显提高。同时发现,乙烯转化率和孤立铝含量之间存在较好的正相关线性关系,而丙烯的生成则与孤立铝和邻近铝的共同作用有关。
  • FIG. 848.  FIG. 848.

    FIG. 848.  FIG. 848.

    图  1  ZSM-5分子筛上乙醇转化制丙烯的主要途径

    Figure  1  Proposed reaction pathways of ethanol conversion to propene over ZSM-5 zeolites

    图  2  孤立铝(Alsingle)与邻近铝(Alpairs)结构示意图

    Figure  2  Schemes for isolated Al (Alsingle) and paried Al (Alpairs) sites

    图  3  水蒸气不同处理时间(a)及处理温度下(b)的ZSM-5分子筛的XRD谱图

    Figure  3  XRD patterns of ZSM-5 samples treated under different steaming times (a) and temperatures (b)

    图  4  水蒸气处理不同时间样品的 27Al MAS NMR谱图

    Figure  4  27Al MAS NMR spectra of ZSM-5 samples treated under different steaming times

    图  5  水蒸气处理不同时间后的 27Al MAS NMR 拟合谱图

    Figure  5  Deconvolution of 27Al MAS NMR spectra of ZSM-5 samples treated under different steaming times

    图  6  水蒸气处理时间(a)及温度(b)对Alsingle及Alpairs含量的影响

    Figure  6  The effects of steaming time and temperature on the concentrations of Alsingle and Alparis

    图  7  水蒸气不同处理时间(a)及处理温度下(b)的ZSM-5分子筛的羟基红外光谱谱图

    Figure  7  OH-region of ZSM-5 samples treated under different steaming times (a) and temperatures (b)

    图  8  600 ℃下水蒸气处理时间对ZSM-5酸量的影响

    Figure  8  Effect of steaming time at 600 ℃ on acid amounts of ZSM-5

    图  9  水蒸气处理温度对ZSM-5酸量的影响

    Figure  9  Effect of steaming temperature on acid amounts of ZSM-5

    图  10  水蒸气处理时间对ZSM-5分子筛上乙醇转化制丙烯催化性能的影响

    Figure  10  Effects of steaming time on the catalytic properties of ETO over ZSM-5

    图  11  水蒸气处理温度对ZSM-5分子筛上乙醇转化制丙烯催化性能的影响

    Figure  11  Effects of steaming temperature on the catalytic properties of ETO over ZSM-5

    图  12  乙烯转化率(a)和丙烯选择性(b)与孤立铝含量之间的线性关系

    Figure  12  Relationship between the conversion of ethene (a), propene selectivity (b) and the concentration of isolated Al for ZSM-5 zeolites after steaming treatment

    表  1  水蒸气处理时间及温度对ZSM-5分子筛织构性质的影响

    Table  1  The effects of steaming time and temperature on textural properties of ZSM-5 samples

    SampleSi/AlaCrystallinity/%bSurface area/(m2·g−1)Pore volume/(cm3·g−1)
    totalmicroporeexternaltotalmicropore
    ZSM-5251003872691180.320.13
    S-600-425943582541040.300.12
    S-600-82594348257910.290.11
    S-600-122591333259740.280.11
    S-600-242588337275620.290.12
    S-600-482583329276530.290.12
    S-450-825953652401250.330.11
    S-500-825923692461230.310.11
    S-550-825863812591220.320.12
    S-650-82577354274800.290.12
    a: Determined by ICP-AES; b: The relative crystallinity of a sample determined by XRD was calculated by comparing its peak area in the 2θ range of 22°−25° to that of ZSM-5 (ZSM-5, assuming that it had a crystallinity of 100%)
    下载: 导出CSV

    表  2  27Al MAS NMR谱图拟合

    Table  2  Results of deconvolution of 27Al MAS NMR spectra

    SampleRelative peak areas/%
    55.6
    (chemical shift)
    52.6
    (chemical shift)
    0
    (chemical shift)
    ZSM-551463
    S-600-431636
    S-600-8246314
    S-600-12226117
    S-600-24235324
    S-600-48214831
    下载: 导出CSV

    表  3  水蒸气处理后分子筛的酸性质

    Table  3  Acidic properties of ZSM-5 samples after steaming

    SampleAcidity by type/(μmol·g−1)Brønsted acid distributionaExternal Acidity/(μmol·g−1)
    BLB/LstrongmediumweakBproportion/%
    ZSM-5327883.782108288
    S-600-42301182.0831613114
    S-600-82111361.6890113818
    S-600-121761491.26615193922
    S-600-241151390.8494552925
    S-600-4878781.04926253039
    S-450-83211212.787122227
    S-500-83181073.078157248
    S-550-8244922.7761863816
    S-650-81171280.950282298
    a: Brønsted acidic sites (BAS) distribution were calculated from the amounts of BAS determined by Py-FTIR at different temperatures (weak, pyridine desorbed at 150−250 ℃; medium, pyridine desorbed at 250−350 ℃; strong, pyridine remained at 350 ℃)
    下载: 导出CSV
  • [1] 翟岩亮, 张少龙, 张络明, 尚蕴山, 王文轩, 宋宇, 姜彩彤, 巩雁军. 不同B, Al分布对ZSM-5分子筛的甲醇制丙烯反应性能的影响[J]. 物理化学学报,2019,35(11):1248−1258. doi: 10.3866/PKU.WHXB201901062

    ZHAI Yan-liang, ZHANG Shao-long, ZHANG Luo-ming, SHANG Yun-shan, WANG Wen-xuan, SONG Yu, JIANG Cai-tong, GONG Yan-jun. Effect of B and Al distribution in ZSM-5 zeolite on methanol to propylene reaction performance[J]. Acta Phys-Chim Sin,2019,35(11):1248−1258. doi: 10.3866/PKU.WHXB201901062
    [2] WANG S, ZHANG L, LI S Y, QIN Z F, SHI D Z, HE S P, YUAN K, WANG P F, ZHAO T S, FAN S B, DONG M, LI J F, FAN W B, WANG J G. Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins[J]. J Catal,2019,377:81−97. doi: 10.1016/j.jcat.2019.07.028
    [3] 申文杰. ZSM-5分子筛强弱酸梯度分布增强其MTP反应的转化效率[J]. 物理化学学报,2019,35(11):1179−1182. doi: 10.3866/PKU.WHXB201906068

    SHENG Wen-jie. The strong and weak acid distributions of ZSM-5 zeolite promote its MTP reaction performance[J]. Acta Phys-Chim Sin,2019,35(11):1179−1182. doi: 10.3866/PKU.WHXB201906068
    [4] BECERRA J, FIGUEREDO M, COBO M. Thermodynamic and economic assessment of the production of light olefins from bioethanol[J]. J Environ Chem Eng,2017,5:1554−1564. doi: 10.1016/j.jece.2017.02.035
    [5] ZHANG L, WANG S, SHI D Z, QIN Z F, WANG P F, WANG G F, LI J F, DONG M, FAN W B, WANG J G. Methanol to olefins over H-RUB-13 zeolite: Regulation of framework aluminum siting and acid density and their relationship to the catalytic performance[J]. Catal Sci Technol,2020,10:1835−1847. doi: 10.1039/C9CY02419K
    [6] OIKAWA H, SHIBATA Y, INAZU K, IWASE Y, MURAI K, HYODO S, KOBAYASHI G, BABA T. Highly selective conversion of ethene to propene over SAPO-34 as a solid acid catalyst[J]. Appl Catal A: Gen,2006,312:181−185. doi: 10.1016/j.apcata.2006.06.045
    [7] DAI W L, SUN X M, TANG B, WU G J, LI L D, GUAN N J, HUNGER M. Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13[J]. J Catal,2014,314:10−20. doi: 10.1016/j.jcat.2014.03.006
    [8] RODEMERCK U, KONDRATENKO E V, STOYANOVA M, LINKE D. Study of reaction network of the ethylene-to-propene reaction by means of isotopically labelled reactants[J]. J Catal,2020,389:317−327. doi: 10.1016/j.jcat.2020.06.009
    [9] RAMASAMY K K, WANG Y. Ethanol conversion to hydrocarbons on HZSM-5: Effect of reaction conditions and Si/Al ratio on the product distributions[J]. Catal Today,2014,237:89−99. doi: 10.1016/j.cattod.2014.02.044
    [10] FURUMOTO Y, HARADA Y, TSUNOJI N, TAKAHASHI A, FUJITANI T, IDE Y, SADAKANE M, SANO T. Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene[J]. Appl Catal A: Gen,2011,399:262−267. doi: 10.1016/j.apcata.2011.04.009
    [11] TAKAHASHI A, XIA W, NAKAMURA I, SHIMADA H, FUJITANI T. Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts[J]. Appl Catal A: Gen,2012,423−424:162−167. doi: 10.1016/j.apcata.2012.02.029
    [12] HUANGFU J J, MAO D S, ZHAI X L, GUO Q S. Remarkably enhanced stability of HZSM-5 zeolite co-modified with alkaline and phosphorous for the selective conversion of bio-ethanol to propylene[J]. Appl Catal A: Gen,2016,520:99−104. doi: 10.1016/j.apcata.2016.04.016
    [13] ZHANG S L, GONG Y J, ZHANG L L, LIU Y S, DOU T, XU J, DENG F. Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: Finely tuning the acidic property[J]. Fuel Process Technol,2015,129:130−138. doi: 10.1016/j.fuproc.2014.09.006
    [14] ARAMBURO L R, RUIZ-MARTINEZ J, SOMMER L, ARSTAD B, BUITRAGO-SIERRA R, SEPULVEDA-ESCRIBANO A, ZANDBERGEN H W, OLSBYE U, DE GROOT F M F, WECKHUYSEN B M. X-Ray Imaging of SAPO-34 molecular sieves at the nanoscale: Influence of steaming on the methanol-to-hydrocarbons reaction[J]. ChemCatChem,2013,5:1386−1394. doi: 10.1002/cctc.201200670
    [15] NIU X J, GAO J, WANG K, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics[J]. Fuel Process Technol,2017,157:99−107. doi: 10.1016/j.fuproc.2016.12.006
    [16] WANG S, LI S Y, ZHANG L, QIN Z F, DONG M, LI J F, WANG J G, FAN W B. Insight into the effect of incorporation of boron into ZSM-11 on its catalytic performance for conversion of methanol to olefins[J]. Catal Sci Technol,2017,7:4766−4779. doi: 10.1039/C7CY01428G
    [17] DEDECEK J, TABOR E, SKLENAK S. Tuning the Aluminum Distribution in Zeolites to Increase their Performance in Acid-Catalyzed Reactions[J]. ChemSusChem,2018,11:1−22. doi: 10.1002/cssc.201702374
    [18] PASHKOVA V, KLEIN P, DEDECEK J, TOKAROVA V, WICHTERLOVA B. Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework[J]. Microporous Mesoporous Mater,2015,202:138−146. doi: 10.1016/j.micromeso.2014.09.056
    [19] ONG L H, DOMOK M, OLINDO R, VAN VEEN A C, LERCHER J A. Dealumination of HZSM-5 via steam-treatment[J]. Microporous Mesoporous Mater,2012,164:9−20. doi: 10.1016/j.micromeso.2012.07.033
    [20] TEKETEL S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Co-conversion of methanol and light alkenes over acidic zeolite catalyst H-ZSM-22: Simulated recycle of non-gasoline range products[J]. Appl Catal A: Gen,2015,494:68−76. doi: 10.1016/j.apcata.2015.01.035
    [21] WU W Z, GUO W Y, XIAO W D, LUO M. Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5[J]. Chem Eng Sci,2011,66:4722−4732. doi: 10.1016/j.ces.2011.06.036
    [22] ARAMBURO L R, DE SMIT E, ARSTAD B, VAN SCHOONEVELD M M, SOMMER L, JUHIN A, YOKOSAWA T, ZANDBERGEN H W, OLSBYE U, DE GROOT F M, WECKHUYSEN B M. X-ray imaging of zeolite particles at the nanoscale: Influence of steaming on the state of aluminum and the methanol-to-olefin reaction[J]. Angew Chem Int Ed,2012,51:3616−3619. doi: 10.1002/anie.201109026
    [23] NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater,2014,197:252−261. doi: 10.1016/j.micromeso.2014.06.027
    [24] LI C G, VIDAL-MOYA A, MIGUEL P J, DEDECEK J, BORONAT M, CORMA A. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications[J]. ACS Catal,2018,8:7688−7697. doi: 10.1021/acscatal.8b02112
    [25] MAIER S M, JENTYS A, LERCHER J A. Steaming of zeolite BEA and its effect on acidity: A comparative NMR and IR spectroscopic study[J]. J Phys Chem C,2011,115:8005−8013. doi: 10.1021/jp108338g
    [26] BARBERA K, BONINO F, BORDIGA S, JANSSENS T V W, BEATO P. Structure-deactivation relationship for ZSM-5 catalysts governed by framework defects[J]. J Catal,2011,280:196−205. doi: 10.1016/j.jcat.2011.03.016
    [27] SAZAMA P, WICHTERLOVA B, DEDECEK J, TVARUZKOVA Z, MUSILOVA Z, PALUMBO L, SKLENAK S, GONSIOROVA O. FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons[J]. Microporous Mesoporous Mater,2011,143:87−96. doi: 10.1016/j.micromeso.2011.02.013
    [28] LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting[J]. ACS Catal,2016,6:7311−7325. doi: 10.1021/acscatal.6b01771
    [29] ALMUTAIRI S M T, MEZARI B, PIDKO E A, MAGUSIN P C M M, HENSEN E J M. Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite[J]. J Catal,2013,307:194−203. doi: 10.1016/j.jcat.2013.07.021
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  75
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 修回日期:  2021-02-21
  • 网络出版日期:  2021-03-11
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回