留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化碳加氢制长链线性α-烯烃铁基催化剂研究进展

王晨 张建利 高新华 赵天生

王晨, 张建利, 高新华, 赵天生. 二氧化碳加氢制长链线性α-烯烃铁基催化剂研究进展[J]. 燃料化学学报, 2023, 51(1): 67-84. doi: 10.1016/S1872-5813(22)60058-6
引用本文: 王晨, 张建利, 高新华, 赵天生. 二氧化碳加氢制长链线性α-烯烃铁基催化剂研究进展[J]. 燃料化学学报, 2023, 51(1): 67-84. doi: 10.1016/S1872-5813(22)60058-6
WANG Chen, ZHANG Jian-li, GAO Xin-hua, ZHAO Tian-sheng. Research progress on iron-based catalysts for CO2 hydrogenation to long-chain linear α-olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 67-84. doi: 10.1016/S1872-5813(22)60058-6
Citation: WANG Chen, ZHANG Jian-li, GAO Xin-hua, ZHAO Tian-sheng. Research progress on iron-based catalysts for CO2 hydrogenation to long-chain linear α-olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 67-84. doi: 10.1016/S1872-5813(22)60058-6

二氧化碳加氢制长链线性α-烯烃铁基催化剂研究进展

doi: 10.1016/S1872-5813(22)60058-6
基金项目: 宁夏重点研发计划东西部合作项目(2017BY063)和宁夏自然科学基金项目(2022AAC02014)资助
详细信息
    通讯作者:

    E-mail:zhaots@nxu.edu.cn

  • 中图分类号: O643.36

Research progress on iron-based catalysts for CO2 hydrogenation to long-chain linear α-olefins

Funds: The project was supported by the East-West Cooperation Project, Key R&D Plan of Ningxia (2017BY063) and Natural Science Foundation of Ningxia (2022AAC02014).
  • 摘要: 长链线性α-烯烃(linear α-olefins, LAOs)是重要的化工原料,目前,主要通过石油化工路线获得。随着全球温升影响加剧,CO2控制与资源化利用技术研究受到持续关注。费托合成(Fischer-Tropsch synthesis, FTS)反应产生一定比例的LAOs,提供了制取LAOs可供选择的技术路线。本综述围绕CO2加氢制LAOs过程,结合其反应途径,分析了Fe基催化剂的研究进展,包括助催化剂和载体的作用,阐述了Fe基催化剂上链增长机理和影响LAOs选择性的关键因素,总结了该反应面临的挑战、可能的解决思路,对高效Fe基催化剂研究进行了展望。
  • 图  1  CO2加氢生成烯烃机理

    Figure  1  Mechanism for CO2 hydrogenation to olefins

    图  2  FeCoMnK/BeO催化剂上CO2加氢制烯烃反应机理[25]

    Figure  2  Mechanism of CO2 hydrogenation to olefins on FeCoMnK/BeO[25](with permission from Elsevier)

    图  3  Fe5C2催化剂上(a)CO2加氢活性与产物选择性和(b)反应路径[27]

    Figure  3  (a) CO2 hydrogenation activity and product selectivity and (b) reaction pathways on Fe5C2[27](with permission from Elsevier)

    图  4  Fe基催化剂上CO2加氢链增长过程[30]

    Figure  4  Chain propagation of CO2 hydrogenation to olefins on Fe-based catalysts[30](with permission from Elsevier)

    图  5  链增长几率随碳数变化[34]

    Figure  5  Chain growth probability with carbon number[34]

    图  6  CO2加氢过程的再吸附机理[29]

    Figure  6  Readsorption mechanism in CO2 hydrogenation[29](with permission from Elsevier)

    图  7  CO2加氢链增长与链终止[37]

    Figure  7  Chain propagation and termination in CO2 hydrogenation[37](with permission from Elsevier)

    图  8  不同K助剂对Fe/C催化CO2加氢制长链烯烃的影响(a) 产物分布, (b) 含碳K助剂之间的相互转化过程, (c) 反应后催化剂中的Fe5C2含量, (d) 不同接触距离的Fe/C-K2CO3催化性能 (a:d50, b:TEM)[44]

    Figure  8  Effect of different K promoters on Fe/C for CO2 hydrogenation to LAOs (a) product distribution, (b) interconversion of carbonaceous K-promoters, (c) Fe5C2 content of used catalysts, (d) catalytic performance on Fe/C-K2CO3 with different proximity (a:d50, b: estimated by TEM)[44](with permission from ACS Publications)

    图  9  Na-Fe2O3催化CO2加氢制烯烃 (a) 时空收率、链增长因子、O/P值和(b) CH4、C2–C7烷烃、C2–C7烯烃产率与Na含量关系, (c) Na助剂在Fe、C物种演变中的作用[46],Fe5C2-ZnO-Na催化CO2加氢制烯烃,(d) Na促进作用机制, (e) Na含量对催化性能的影响[47]

    Figure  9  CO2 hydrogenation to olefins on Na-Fe2O3 (a) FTY, chain growth probability, O/P value and (b) CH4, ${\rm{C}}^0_2 -{\rm{C}}^0_7 $, ${\rm{C}}^=_2 -{\rm{C}}^=_7 $ yields as a function of Na content, (c) role of Na promoter in the evolution of iron and carbon species[46], CO2 hydrogenation to olefins on Fe5C2-ZnO-Na, (d) promotion mechanism of Na, (e) effect of Na content on catalytic performance[47](with permission from Elsevier)

    图  10  Zn助剂对Fe基催化剂CO2加氢制LAOs影响:(a) Fe5C2-ZnO在CO2加氢过程中结构变化[53],(b) Fe2O3和Fe2Zn1催化稳定性[54]

    Figure  10  Effect of Zn promoter on Fe-based catalysts for CO2 hydrogenation to LAOs: (a) structure evolution of Fe5C2-ZnO during CO2 hydrogenation[53] (b) catalytic stability of Fe2O3 and Fe2Zn1[54](with permission from Elsevier and ACS Publications)

    图  11  (a) Fe-Zn-Al[60]和(b) FeAlOx催化作用机制[61]

    Figure  11  Catalytic mechanism of (a) Fe-Zn-Al[60] and (b) FeAlOx [61](with permission from ACS Publications)

    图  12  Fe/C-Bio催化剂上CO2加氢制LAOs反应路径[62]

    Figure  12  Reaction pathways of CO2 hydrogenation to LAOs on Fe/C-Bio[62]

    图  13  (a)不同载体负载Fe5C2催化加氢性能(b)Fe5C2和K/a-Al2O3混合方式影响[71]

    Figure  13  (a) Catalytic activity of supported Fe5C2 (b) effect of integration manner between Fe5C2 and K/a-Al2O3[71](with permission from ACS Publications)

    图  14  ((a)–(b)) 不同载体负载FeNa的CO2加氢催化性能[36],Fe/ZrO2催化剂的(c) 粒径效应和(d) 催化性能[73]

    Figure  14  ((a)–(b)) Catalytic performance on various supported FeNa[36], (c) effect of particle size and (d) catalytic performance on Fe/ZrO2[73](with permission from Elsevier and ACS Publications)

    图  15  不同形貌Fe/CeO2催化剂的TEM照片[80]

    Figure  15  TEM images of Fe/ceria[80] (a): nanoparticles; (b): nanorods; (c): nanocubes

    图  16  FeK/SWNTs和FeK/MWNTs催化CO2加氢(a)产物选择性((b)、(c)) 链增长因子[88]

    Figure  16  (a) Product selectivity, ((b), (c)) chain growth probability on FeK/SWNTs and FeK/MWNTs for CO2 hydrogenation[88](with permission from ACS Publications)

    表  1  Fe基催化剂CO2加氢制LAOs性能

    Table  1  Performance of Fe-based catalysts for CO2 hydrogenation to LAOs

    CatalystReaction conditionsCO2 conv.
    /%
    CO sel.
    /%
    Hydrocarbon distribution/%LAOs
    sel. /%
    Ref.
    H2/CO2t/℃p/MPaGHSV/(mL·g−1·h−1)CH4${\rm{C}}^=_2 -{\rm{C}}^=_4 $${\rm{C}}^=_{5+} $
    Fe-K2CO333201240032.421.412.726.560.871.8[44]
    Fe-Zn-Na33301.51500043.59.211.516.660.789.3[53]
    Fe-Mn-Na33402120003518.110.731.739.5[57]
    Fe-Cu-Na33001180016.731.42.428.964.9[59]
    Fe-Zn-Al33501.51500039.122.51624.745.688.7[60]
    FeAlOx13303.5200020.216.85.411.766.878.4[61]
    Fe/C-bio3320324003123.211.824.450.380[62]
    Fe-K/Al2O333203360024.123.47.521.940.4[71]
    FeK/SWNTs33402900052.79.613.530.739.8[88]
    下载: 导出CSV

    表  2  碱金属对Fe/ZrO2催化CO2加氢影响[43]

    Table  2  Effect of alkali metals on Fe/ZrO2 for CO2 hydrogenation[43](with permission from Elsevier)

    Alkali
    metal
    CO2
    conv.
    /%
    Selectivity/%Hydrocarbon
    distribution/%
    COHCCH4${\rm{C}}^=_2 - {\rm{C}}^=_4 $${\rm{C}}^0_2 - {\rm{C}}^0_4 $${\rm{C}}^=_{5+} $${\rm{C}}^0_{5+} $
    32 25 75 70 0.1 29 0.4 0.5
    Li + 26 42 56 68 1.4 30 0.1 0.5
    Na + 39 21 59 21 49 8.8 15 6.2
    K + 43 15 66 18 44 9.2 19 9.8
    Rb + 31 15 68 19 43 8.0 19 11
    Cs + 39 16 67 26 43 9.6 14 7.4
    下载: 导出CSV
  • [1] ZOU C N, XIONG B, XUE H Q, ZHENG D W, GE Z X, WANG Y, JIANG L Y, PAN S Q, WU S T. The role of new energy in carbon neutral[J]. Pet Explor Dev,2021,48(2):480−491. doi: 10.1016/S1876-3804(21)60039-3
    [2] FANG K, LI C L, TANG Y Q, HE J J, SONG J N. China’s pathways to peak carbon emissions: New insights from various industrial sectors[J]. Appl Energy,2022,306:118039. doi: 10.1016/j.apenergy.2021.118039
    [3] LANG X D, HE X, LI Z M, HE L N. New routes for CO2 activation and subsequent conversion[J]. Curr Opin Green Sustainable Chem,2017,7:31−38. doi: 10.1016/j.cogsc.2017.07.001
    [4] SATTHAWONG R, KOIZUMI N, SONG C, PRASASSARAKICH P. Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons[J]. J CO2 Util,2013,3−4:102−106. doi: 10.1016/j.jcou.2013.10.002
    [5] XUE L, ZHANG C J, WU J F, FAN Q Y, LIU Y, WU Y X, LI J X, ZHANG H, LIU F R, ZENG S H. Unveiling the reaction pathway on Cu/CeO2 catalyst for electrocatalytic CO2 reduction to CH4[J]. Appl Catal B: Environ,2022,304:120951. doi: 10.1016/j.apcatb.2021.120951
    [6] MIAO Z R, WANG Q L, ZHANG Y F, MENG L P, WANG X X. In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O[J]. Appl Catal B: Environ,2022,301:120802. doi: 10.1016/j.apcatb.2021.120802
    [7] GUO L S, CUI Y, LI H J, FANG Y, PRASERT R, WU J, YANG G, YONEYAMA Y, TSUBAKI N. Selective formation of linear-alpha olefins (LAOS) by CO2 hydrogenation over bimetallic Fe/Co-Y catalyst[J]. Catal Commun,2019,130:105759. doi: 10.1016/j.catcom.2019.105759
    [8] RA E C, KIM K Y, KIM E H, LEE H, AN K, LEE J S. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catal,2020,10(19):11318−11345. doi: 10.1021/acscatal.0c02930
    [9] ROY S, CHEREVOTAN A, PETER S C. Thermochemical CO2 hydrogenation to single carbon products: Scientific and technological challenges[J]. ACS Energy Lett,2018,3(8):1938−1966. doi: 10.1021/acsenergylett.8b00740
    [10] GUO L S, SUN J, GE Q J, TSUBAKI N. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2 + hydrocarbons[J]. J Mater Chem A,2018,6(46):23244−23262. doi: 10.1039/C8TA05377D
    [11] WEI J, YAO R W, HAN Y, GE Q J, SUN J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons[J]. Chem Soc Rev,2021,50(19):10764−10805. doi: 10.1039/D1CS00260K
    [12] WANG D, XIE Z H, POROSOFF M D, CHEN J G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J]. Chem,2021,7(9):2277−2311. doi: 10.1016/j.chempr.2021.02.024
    [13] 王晗, 樊升, 王森, 董梅, 秦张峰, 樊卫斌, 王建国. 二氧化碳加氢制一些烃类化合物的研究进展[J]. 燃料化学学报,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6

    WANG Han, FAN Sheng, WANG Sen, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. J Fuel Chem Technol,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6
    [14] MA Z, POROSOFF M D. Development of tandem catalysts for CO2 hydrogenation to olefins[J]. ACS Catal,2019,9(3):2639−2656. doi: 10.1021/acscatal.8b05060
    [15] PAWELEC B, GUIL-L PEZ R, MOTA N, FIERRO J L G, NAVARRO YERGA R M. Catalysts for the conversion of CO2 to low molecular weight olefins-A review[J]. Materials,2021,14(22):6952. doi: 10.3390/ma14226952
    [16] GAO P, DANG S S, LI S G, BU X N, LIU Z Y, QIU M H, YANG C G, WANG H, ZHONG L S, HAN Y, LIU Q, WEI W, SUN Y H. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2017,8(1):571−578.
    [17] LI Z L, WANG J J, QU Y Z, LIU H L, TANG C Z, MIAO S, FENG Z C, AN H Y, LI C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal,2017,7(12):8544−8548. doi: 10.1021/acscatal.7b03251
    [18] GAO P, LI S G, BU X N, DANG S S, LIU Z Y, WANG H, ZHONG L S, QIU M H, YANG C G, CAI J, WEI W, SUN Y H. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9(10):1019−1024. doi: 10.1038/nchem.2794
    [19] 纪学玮, 葛庆杰, 孙剑. 协同高效的铁催化剂构建及其在 CO2 加氢制高碳烃中的应用[J]. 燃料化学学报,2019,47(4):438−445.

    JI Xue-wei, GE Qing-jie, SUN Jian. Construction of synergistic and efficient iron-based catalysts for hydrogenation of CO2 to higher hydrocarbons[J]. J Fuel Chem Technol,2019,47(4):438−445.
    [20] ALBRECHT M, RODEMERCK U, SCHNEIDER M, BR RING M, BAABE D, KONDRATENKO E V. Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3[J]. Appl Catal B: Environ,2017,204:119−126. doi: 10.1016/j.apcatb.2016.11.017
    [21] WANG Q, CHEN Y, LI Z H. Research progress of catalysis for low-carbon olefins synthesis through hydrogenation of CO2[J]. J Nanosci Nanotechnol,2019,19(6):3162−3172. doi: 10.1166/jnn.2019.16586
    [22] 张超, 张玉龙, 朱明辉, 孟博, 涂维峰, 韩一帆. CO2高值化利用新途径: 铁基催化剂CO2加氢制烯烃研究进展[J]. 化工进展,2021,40(2):577−593.

    ZHANG Chao, ZHANG Yu-long, ZHU Ming-hui, MENG Bo, TU Wei-feng, HAN Yi-fan. New pathway for CO2 high-valued utilization: Fe-based catalysts for CO2 hydrogenation to low olefins[J]. Chem Ind Eng Prog,2021,40(2):577−593.
    [23] AMOYAL M, VIDRUK-NEHEMYA R, LANDAU M V, HERSKOWITZ M. Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation[J]. J Catal,2017,348:29−39. doi: 10.1016/j.jcat.2017.01.020
    [24] WEBER D, HE T, WONG M, MOON C, ZHANG A, FOLEY N, RAMER N J, ZHANG C. Recent advances in the mitigation of the catalyst deactivation of CO2 hydrogenation to light olefins[J]. Catalysts,2021,11(12):1447. doi: 10.3390/catal11121447
    [25] 李梦青, 邓国才, 陈荣悌, 刘崇微, 朱起明. FeCoMnK/BeO催化剂上二氧化碳加氢合成低碳烯烃的反应性能和原位FT-IR研究[J]. 催化学报,2000,21(1):71−74. doi: 10.3321/j.issn:0253-9837.2000.01.020

    LI Meng-qing, DENG Guo-cai, CHEN Rong-ti, LIU Chong-wei, ZHU Qi-ming. Synthesis of light olefins from CO2 hydrogenation on FeCoMnK/BeO catalysts and in situ FT-IR studies[J]. Chin J Catal,2000,21(1):71−74. doi: 10.3321/j.issn:0253-9837.2000.01.020
    [26] RIEDEL T, SCHAUB G, JUN K-W, LEE K-W. Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst[J]. Ind Eng Chem Res,2001,40(5):1355−1363. doi: 10.1021/ie000084k
    [27] LIU J H, ZHANG G H, JIANG X, WANG J H, SONG C S, GUO X W. Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons[J]. Catal Today,2021,371:162−170. doi: 10.1016/j.cattod.2020.07.032
    [28] FISCHER F, TROPSCH H. The synthesis of petroleum at atmospheric pressures from gasification products of coal[J]. Brennst-Chem,1926,7:97−104.
    [29] LEE S C, JANG J H, LEE B Y, KIM J S, KANG M, LEE S B, CHOI M J, CHOUNG S J. Promotion of hydrocarbon selectivity in CO2 hydrogenation by Ru component[J]. J Mol Catal A: Chem,2004,210(1/2):131−141. doi: 10.1016/j.molcata.2003.09.013
    [30] SAEIDI S, NAJARI S, HESSEL V, WILSON K, KEIL F J, CONCEPCI N P, SUIB S L, RODRIGUES A E. Recent advances in CO2 hydrogenation to value-added products-current challenges and future directions[J]. Prog Energy Combust Sci,2021,85:100905. doi: 10.1016/j.pecs.2021.100905
    [31] SCHULZ H, RIEDEL T, SCHAUB G. Fischer-Tropsch principles of co-hydrogenation on iron catalysts[J]. Top Catal,2005,32(3):117−124.
    [32] SCHULZ H, SCHAUB G, CLAEYS M, RIEDEL T. Transient initial kinetic regimes of Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,1999,186(1):215−227.
    [33] PANZONE C, PHILIPPE R, CHAPPAZ A, FONGARLAND P, BENGAOUER A. Power-to-liquid catalytic CO2 valorization into fuels and chemicals: Focus on the Fischer-Tropsch route[J]. J CO2 Util,2020,38:314−347. doi: 10.1016/j.jcou.2020.02.009
    [34] SCHULZ H. Selforganization in Fischer-Tropsch synthesis with iron- and cobalt catalysts[J]. Catal Today,2014,228:113−122. doi: 10.1016/j.cattod.2013.11.060
    [35] LI W H, WANG H Z, JIANG X, ZHU J, LIU Z M, GUO X W, SONG C S. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts[J]. RSC Adv,2018,8(14):7651−7669. doi: 10.1039/C7RA13546G
    [36] LIU Y Y, CHEN B J, LIU R, LIU W Q, GAO X H, TAN Y S, ZHANG Z Z, TU W F. CO2 hydrogenation to olefins on supported iron catalysts: effects of support properties on carbon-containing species and product distribution[J]. Fuel,2022,324:124649. doi: 10.1016/j.fuel.2022.124649
    [37] LEE S C, JANG J H, LEE B Y, KANG M C, KANG M, CHOUNG S J. The effect of binders on structure and chemical properties of Fe-K/γ-Al2O3 catalysts for CO2 hydrogenation[J]. Appl Catal A: Gen,2003,253(1):293−304. doi: 10.1016/S0926-860X(03)00540-4
    [38] ZHOU W, CHENG K, KANG J C, ZHOU C, SUBRAMANIAN V, ZHANG Q H, WANG Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [39] JIANG J D, WEN C Y, TIAN Z P, WANG Y C, ZHAI Y P, CHEN L G, LI Y P, LIU Q Y, WANG C G, MA L L. Manganese-promoted Fe3O4 microsphere for efficient conversion of CO2 to light olefins[J]. Ind Eng Chem Res,2020,59(5):2155−2162. doi: 10.1021/acs.iecr.9b05342
    [40] 吴大凯, 王旭, 高新华, 马清祥, 张建利, 范素兵, 赵天生. 层状K-Fe-Zn-Ti催化剂的制备及其对二氧化碳加氢制烯烃反应的催化性能[J]. 燃料化学学报,2019,47(8):949−956. doi: 10.1016/S1872-5813(19)30040-4

    WU Da-kai, WANG Xu, GAO Xin-hua, MA Qing-xiang, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K-Fe-Zn-Ti catalyst and its performance in the hydrogenation of carbon dioxide to light olefins[J]. J Fuel Chem Technol,2019,47(8):949−956. doi: 10.1016/S1872-5813(19)30040-4
    [41] GUPTA S, JAIN V K, JAGADEESAN D. Fine tuning the composition and nanostructure of Fe-based core-shell nanocatalyst for efficient CO2 hydrogenation[J]. ChemNanoMat,2016,2(10):989−996. doi: 10.1002/cnma.201600234
    [42] ELISHAV O, SHENER Y, BEILIN V, LANDAU M V, HERSKOWITZ M, SHTER G E, GRADER G S. Electrospun Fe-Al-O nanobelts for selective CO2 hydrogenation to light olefins[J]. ACS Appl Mater Interfaces,2020,12(22):24855−24867. doi: 10.1021/acsami.0c05765
    [43] WANG J J, YOU Z Y, ZHANG Q H, DENG W P, WANG Y. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J]. Catal Today,2013,215:186−193. doi: 10.1016/j.cattod.2013.03.031
    [44] HAN Y, FANG C Y, JI X W, WEI J, GE Q J, SUN J. Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron[J]. ACS Catal,2020,10(20):12098−12108. doi: 10.1021/acscatal.0c03215
    [45] WANG S W, JI Y S, LIU X C, YAN S R, XIE S H, PEI Y, LI H X, QIAO M H, ZONG B N. Potassium as a versatile promoter to tailor the distribution of the olefins in CO2 hydrogenation over iron-based catalyst[J]. ChemCatChem,2022,14(6):e202101535.
    [46] WEI C Y, TU W F, JIA L Y, LIU Y Y, LIAN H L, WANG P, ZHANG Z Z. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins[J]. Appl Surf Sci,2020,525:146622. doi: 10.1016/j.apsusc.2020.146622
    [47] TU W F, SUN C, ZHANG Z Z, LIU W Q, MALHI H S, MA W, ZHU M H, HAN Y F. Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear alpha-olefins[J]. Appl Catal B: Environ,2021,298:120567. doi: 10.1016/j.apcatb.2021.120567
    [48] HESKETT D. The interaction range in alkali metal-promoted systems[J]. Surf Sci,1988,199(1):67−86.
    [49] LI J F, CHENG X F, ZHANG C H, CHANG Q, WANG J, WANG X P, LV Z G, DONG W S, YANG Y, LI Y W. Effect of alkalis on iron-based Fischer-Tropsch synthesis catalysts: Alkali-FeOx interaction, reduction, and catalytic performance[J]. Appl Catal A: Gen,2016,528:131−141. doi: 10.1016/j.apcata.2016.10.006
    [50] LI J F, CHENG X F, ZHANG C H, WANG J, DONG W S, YANG Y, LI Y W. Alkalis in iron-based Fischer-Tropsch synthesis catalysts: distribution, migration and promotion[J]. J Chem Technol Biotechnol,2017,92(6):1472−1480. doi: 10.1002/jctb.5152
    [51] GAO X H, ZHANG J L, CHEN N, MA Q X, FAN S B, ZHAO T S, TSUBAKI N. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process[J]. Chin J Catal,2016,37(4):510−516. doi: 10.1016/S1872-2067(15)61051-8
    [52] ZHANG J L, LU S P, SU X J, FAN S B, MA Q X, ZHAO T S. Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts[J]. J CO2 Util,2015,12:95−100. doi: 10.1016/j.jcou.2015.05.004
    [53] ZHANG C, XU M J, YANG Z X, ZHU M H, GAO J, HAN Y F. Uncovering the electronic effects of zinc on the structure of Fe5C2-ZnO catalysts for CO2 hydrogenation to linear alpha-olefins[J]. Appl Catal B: Environ,2021,295:120287. doi: 10.1016/j.apcatb.2021.120287
    [54] ZHANG C, CAO C X, ZHANG Y L, LIU X L, XU J, ZHU M H, TU W F, HAN Y F. Unraveling the role of zinc on bimetallic Fe5C2-ZnO catalysts for highly selective carbon dioxide hydrogenation to high carbon alpha-olefins[J]. ACS Catal,2021,11(4):2121−2133. doi: 10.1021/acscatal.0c04627
    [55] ZHU J, WANG P, ZHANG X B, ZHANG G H, LI R T, LI W H, SENFTLE THOMAS P, LIU W, WANG J Y, WANG Y L, ZHANG A F, FU Q, SONG C S, GUO X W. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation[J]. Sci Adv,2022,8(5):eabm3629. doi: 10.1126/sciadv.abm3629
    [56] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [57] XU Y, ZHAI P, DENG Y C, XIE J L, LIU X, WANG S, MA D. Highly selective olefin production from CO2 hydrogenation on iron catalysts: a subtle synergy between manganese and sodium additives[J]. Angew Chem Int Ed Eng,2020,59(48):21736−21744. doi: 10.1002/anie.202009620
    [58] AL-DOSSARY M, ISMAIL A A, FIERRO J L G, BOUZID H, AL-SAYARI S A. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction[J]. Appl Catal B: Environ,2015,165:651−660. doi: 10.1016/j.apcatb.2014.10.064
    [59] CHOI Y H, JANG Y J, PARK H, KIM W Y, LEE Y H, CHOI S H, LEE J S. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels[J]. Appl Catal B: Environ,2017,202:605−610. doi: 10.1016/j.apcatb.2016.09.072
    [60] XU M J, LIU X L, CAO C X, SUN Y, ZHANG C, YANG Z X, ZHU M H, DING X X, LIU Y T, TONG Z F, XU J. Ternary Fe-Zn-Al spinel catalyst for CO2 hydrogenation to linear alpha-olefins: Synergy effects between Al and Zn[J]. ACS Sustainable Chem Eng,2021,9(41):13818−13830. doi: 10.1021/acssuschemeng.1c04629
    [61] KHAN M K, BUTOLIA P, JO H, IRSHAD M, HAN D, NAM K W, KIM J. Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-Amorphous AlOx bifunctional catalysts[J]. ACS Catal,2020,10(18):10325−10338. doi: 10.1021/acscatal.0c02611
    [62] GUO L S, SUN J, JI X W, WEI J, WEN Z Y, YAO R W, XU H Y, GE Q J. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts[J]. Commun Chem,2018,1(1):11. doi: 10.1038/s42004-018-0012-4
    [63] WANG L C, TAHVILDAR KHAZANEH M, WIDMANN D, BEHM R J. TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst-a first step toward identifying a redox mechanism in the reverse water-gas shift reaction[J]. J Catal,2013,302:20−30. doi: 10.1016/j.jcat.2013.02.021
    [64] YIN X L, WANG S, SUN R X, JIANG S X, SHEN L H. A Ce-Fe oxygen carrier with a core-shell structure for chemical looping steam methane reforming[J]. Ind Eng Chem Res,2020,59(21):9775−9786. doi: 10.1021/acs.iecr.0c00055
    [65] WATANABE S, MA X L, SONG C S. Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD[J]. J Phy Chem C,2009,113(32):14249−14257. doi: 10.1021/jp8110309
    [66] ZHANG J L, SU X J, WANG X, MA Q X, FAN S B, ZHAO T S. Promotion effects of Ce added Fe-Zr-K on CO2 hydrogenation to light olefins[J]. React Kinet Mech Catal,2018,124(2):575−585. doi: 10.1007/s11144-018-1377-1
    [67] DORNER R W, HARDY D R, WILLIAMS F W, WILLAUER H D. Effects of ceria-doping on a CO2 hydrogenation iron-manganese catalyst[J]. Catal Commun,2010,11(9):816−819. doi: 10.1016/j.catcom.2010.02.024
    [68] DORNER R W, HARDY D R, WILLIAMS F W, WILLAUER H D. C2-C5 + olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts[J]. Catal Commun,2011,15(1):88−92. doi: 10.1016/j.catcom.2011.08.017
    [69] MACLACHLAN M J, GINZBURG M, COOMBS N, COYLE T W, RAJU N P, GREEDAN J E, OZIN G A, MANNERS I I. Shaped ceramics with tunable magnetic properties from metal-containing polymers[J]. Science,2000,287(5457):1460−1463. doi: 10.1126/science.287.5457.1460
    [70] DING F S, ZHANG A F, LIU M, ZUO Y, LI K Y, GUO X W, SONG C S. CO2 hydrogenation to hydrocarbons over iron-based catalyst: Effects of physicochemical properties of Al2O3 supports[J]. Ind Eng Chem Res,2014,53(45):17563−17569. doi: 10.1021/ie5031166
    [71] LIU J H, ZHANG A F, JIANG X, LIU M, ZHU J, SONG C S, GUO X W. Direct transformation of carbon dioxide to value-added hydrocarbons by physical mixtures of Fe5C2 and K-modified Al2O3[J]. Ind Eng Chem Res,2018,57(28):9120−9126. doi: 10.1021/acs.iecr.8b02017
    [72] NUMPILAI T, CHANLEK N, POO-ARPORN Y, WANNAPAIBOON S, CHENG C K, SIRI-NGUAN N, SORNCHAMNI T, KONGKACHUICHAY P, CHAREONPANICH M, RUPPRECHTER G, LIMTRAKUL J, WITOON T. Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins[J]. Appl Surf Sci,2019,483:581−592. doi: 10.1016/j.apsusc.2019.03.331
    [73] ZHU J, ZHANG G H, LI W H, ZHANG X B, DING F S, SONG C S, GUO X W. Deconvolution of the particle size effect on CO2 Hydrogenation over iron-based catalysts[J]. ACS Catal,2020,10(13):7424−7433. doi: 10.1021/acscatal.0c01526
    [74] RODEMERCK U, HOLEŇA M, WAGNER E, SMEJKAL Q, BARKSCHAT A, BAERNS M. Catalyst development for CO2 hydrogenation to fuels[J]. ChemCatChem,2013,5(7):1948−1955. doi: 10.1002/cctc.201200879
    [75] BORERIBOON N, JIANG X, SONG C, PRASASSARAKICH P. Higher hydrocarbons synthesis from CO2 hydrogenation over K- and La-promoted Fe-Cu/TiO2 catalysts[J]. Top Catal,2018,61(15/17):1551−1562. doi: 10.1007/s11244-018-1023-1
    [76] BORERIBOON N, JIANG X, SONG C, PRASASSARAKICH P. Fe-based bimetallic catalysts supported on TiO2 for selective CO2 hydrogenation to hydrocarbons[J]. J CO2 Util,2018,25:330−337. doi: 10.1016/j.jcou.2018.02.014
    [77] LIN Y P, ZHU Y F, PAN X L, BAO X H. Modulating the methanation activity of Ni by the crystal phase of TiO2[J]. Catal Sci Technol,2017,7(13):2813−2818. doi: 10.1039/C7CY00124J
    [78] YU J, YU J H, SHI Z P, GUO Q S, XIAO X Z, MAO H F, MAO D S. The effects of the nature of TiO2 supports on the catalytic performance of Rh-Mn/TiO2 catalysts in the synthesis of C2 oxygenates from syngas[J]. Catal Sci Technol,2019,9(14):3675−3685. doi: 10.1039/C9CY00406H
    [79] LI W H, ZHANG G H, JIANG X, LIU Y, ZHU J, DING F S, LIU Z M, GUO X W, SONG C S. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M=Zr, K, Cs): Effects of crystal phase of supports and metal-support interaction on tuning product distribution[J]. ACS Catal,2019,9(4):2739−2751. doi: 10.1021/acscatal.8b04720
    [80] TORRENTE-MURCIANO L, CHAPMAN R S, NARVAEZ-DINAMARCA A, MATTIA D, JONES M D. Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO2 into hydrocarbons[J]. Phys Chem Chem Phys,2016,18(23):15496−15500. doi: 10.1039/C5CP07788E
    [81] LóPEZ J M, GILBANK A L, GARCíA T, SOLSONA B, AGOURAM S, TORRENTE-MURCIANO L. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation[J]. Appl Catal B: Environ,2015,174−175:403−412. doi: 10.1016/j.apcatb.2015.03.017
    [82] CHERNYAK S A, IVANOV A S, STOLBOV D N, MAKSIMOV S V, SAVILOV S V. Sintered Fe/CNT framework catalysts for CO2 hydrogenation into hydrocarbons[J]. Carbon,2020,168:475−484. doi: 10.1016/j.carbon.2020.06.067
    [83] ZHANG Z P, ZHANG J, XU W, RUI S, HAN Y F. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins[J]. J Catal,2018,365:71−85. doi: 10.1016/j.jcat.2018.05.021
    [84] DAI L Y, CHEN Y, LIU R J, LI X, ULLAH N, LI Z H. CO2 hydrogenation to C5 + hydrocarbons over K-promoted Fe/CNT catalyst: Effect of potassium on structure-activity relationship[J]. Appl Organomet Chem,2021,35(7):e6253.
    [85] WU T J, LIN J, CHENG Y, TIAN J, WANG S W, XIE S H, PEI Y, YAN S R, QIAO M H, XU H L, ZONG B N. Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins[J]. ACS Appl Mater Interfaces,2018,10(28):23439−23443. doi: 10.1021/acsami.8b05411
    [86] ZHANG P Z, HAN F, YAN J Y, QIAO X L, GUAN Q X, LI W. N-doped ordered mesoporous carbon (N-OMC) confined Fe3O4-FeCx heterojunction for efficient conversion of CO2 to light olefins[J]. Appl Catal B: Environ,2021,299:120639. doi: 10.1016/j.apcatb.2021.120639
    [87] WITOON T, NUMPILAI T, NUEANGNORAJ K, CHENG C K, CHAREONPANICH M, LIMTRAKUL J. Light olefins synthesis from CO2 hydrogenation over mixed Fe-Co-K supported on micro-mesoporous carbon catalysts[J]. Int J Hydrogen Energy, 2021. https://doi.org/10.1016/j.ijhydene.2021.10.265
    [88] WANG S W, WU T J, LIN J, JI Y S, YAN S R, PEI Y, XIE S H, ZONG B N, QIAO M H. Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins[J]. ACS Catal,2020,10(11):6389−6401. doi: 10.1021/acscatal.0c00810
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  30
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 录用日期:  2022-08-18
  • 修回日期:  2022-08-17
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回