留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mo-Sn催化剂上甲醇低温氧化制甲缩醛

王文秀 高秀娟 熊盼 张俊峰 宋法恩 张清德 韩怡卓 谭猗生

王文秀, 高秀娟, 熊盼, 张俊峰, 宋法恩, 张清德, 韩怡卓, 谭猗生. Mo-Sn催化剂上甲醇低温氧化制甲缩醛[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60094-4
引用本文: 王文秀, 高秀娟, 熊盼, 张俊峰, 宋法恩, 张清德, 韩怡卓, 谭猗生. Mo-Sn催化剂上甲醇低温氧化制甲缩醛[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60094-4
WANG Wen-xiu, GAO Xiu-juan, XIONG Pan, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Low-temperature oxidation of methanol to dimethoxymethane over Mo-Sn catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60094-4
Citation: WANG Wen-xiu, GAO Xiu-juan, XIONG Pan, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Low-temperature oxidation of methanol to dimethoxymethane over Mo-Sn catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60094-4

Mo-Sn催化剂上甲醇低温氧化制甲缩醛

doi: 10.1016/S1872-5813(21)60094-4
基金项目: 国家自然科学基金(21773283,21373253),中国科学院创新交叉团队项目(BK2018001),中国科学院洁净能源创新研究院合作基金(DNL 201903),中国科学院青年创新促进会人才项目(2014155)和厦门大学固体表面物理化学国家重点实验室开放基金(201624)资助
详细信息
    通讯作者:

    Tel: 0351-4044388, E-mail: qdzhang@sxicc.ac.cn

  • 中图分类号: O643

Low-temperature oxidation of methanol to dimethoxymethane over Mo-Sn catalyst

Funds: The project was supported by the National Natural Science Foundation of China (21773283, 21373253), CAS Interdisciplinary Innovation Team (BK2018001), the Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund, CAS (DNL 201903), the Youth Innovation Promotion Association CAS (2014155) and the Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (201624)
  • 摘要: 采用水热合成法制备了甲醇合成甲缩醛的新型Mo-Sn催化剂。该催化剂可以在低Mo含量时实现甲醇低温氧化高选择性制取甲缩醛。通过考察Mo含量对催化剂结构及甲醇低温氧化制甲缩醛性能的影响,发现Mo1Sn10催化剂在甲醇氧化中表现出了较好的催化性能,在140 ℃、常压反应条件下,甲醇转化率为14.2%,甲缩醛选择性达到了88.9%,并且反应过程中无COx生成。采用XRD、Raman、FT-IR、XPS、NH3-TPD及H2-TPR等表征手段对催化剂进行深入研究。结果表明,不同Mo含量的催化剂结构性能存在着明显的差别,较低含量Mo的存在更有利于Mo5+及MoOx的生成,而由此引起的酸性及氧化还原性的变化是催化剂具有良好性能的重要原因。
  • 图  1  不同Mo含量Mo-Sn催化剂的XRD谱图

    a: Mo2Sn1; b: Mo1Sn2; c: Mo1Sn4; d: Mo1Sn8; e: Mo1Sn10; f: Mo1Sn20

    Figure  1  XRD patterns of Mo-Sn catalysts with different Mo contents

    图  2  不同Mo含量催化剂的Raman谱图

    a: Mo2Sn1; b: Mo1Sn2; c: Mo1Sn4; d: Mo1Sn8; e: Mo1Sn10; f: Mo1Sn20

    Figure  2  Raman spectra of catalysts with different Mo content

    图  3  不同Mo含量Mo-Sn催化剂的FT-IR谱图

    Figure  3  FT-IR spectra of Mo-Sn catalysts with different Mo contents

    图  4  不同Mo含量Mo-Sn催化剂的XPS-Sn 3d谱图

    Figure  4  XPS-Sn 3d spectra of Mo-Sn catalysts with different Mo contents

    图  5  不同Mo含量Mo-Sn催化剂的XPS-Mo 3d谱图

    Figure  5  XPS-Mo 3d spectra of Mo-Sn catalysts with different Mo contents

    图  6  不同Mo含量Mo-Sn催化剂的XPS-O 1s谱图

    Figure  6  XPS-O 1s spectra of Mo-Sn catalysts with different Mo contents

    图  7  不同Mo含量Mo-Sn催化剂的H2-TPR谱图

    Figure  7  H2-TPR profile of Mo-Sn catalysts with different Mo contents

    图  8  不同Mo含量Mo-Sn催化剂的NH3-TPD谱图

    Figure  8  NH3-TPD profile of Mo-Sn catalysts with different Mo contents

    表  1  不同Mo量Mo-Sn催化剂上甲醇转化的反应性能

    Table  1  Effect of Mo content on the performance of Mo-Sn catalysts for methanol conversion

    CatalystCH3OH
    conversion/%
    C-mol selectivity/%
    MFDMEFADMMCOx
    MoO3 0 0 0 0 0 0
    Mo2Sn1 17.2 22.4 23.1 0 54.5 0
    Mo1Sn1 28.3 45.0 23.5 0 31.5 0
    Mo1Sn2 33.9 43.8 17.2 2.9 36.1 0
    Mo1Sn3 32.2 42.8 9.2 0 48.0 0
    Mo1Sn4 26.5 36.3 5.0 0 58.7 0
    Mo1Sn5 21.0 20.9 4.3 2.2 72.6 0
    Mo1Sn8 14.5 10.5 1.7 0 87.8 0
    Mo1Sn10 14.2 11.1 0 0 88.9 0
    Mo1Sn20 10.5 11.8 0 0 88.2 0
    SnO2 0 0 0 0 0 0
    reaction conditions: atmospheric pressure, tR = 140 ℃,n(CH3OH)∶ n(O2) = 1∶9.415, CH3OH flow rate = 0.817 mL/h, GHSV = 7200 h−1
    下载: 导出CSV

    表  2  不同Mo含量Mo-Sn催化剂的XPS-Mo 3d谱图分析

    Table  2  XPS-Mo 3d analysis of Mo-Sn catalysts with different Mo contents

    CatalystMo6+
    3d3/2
    Mo6+
    3d5/2
    Mo5+
    3d3/2
    Mo5+
    3d5/2
    Mo6+/
    %
    Mo5+/
    %
    Mo2Sn1236.33233.07235.18231.7894.55.5
    Mo1Sn2236.27233.10235.10231.8093.16.9
    Mo1Sn4236.24233.10235.17231.9086.313.7
    Mo1Sn8236.18233.02235.06231.8469.630.4
    Mo1Sn20236.14232.94235.11231.8758.941.1
    下载: 导出CSV

    表  3  不同Mo含量Mo-Sn催化剂的XPS-O 1s谱图分析

    Table  3  XPS-O 1S analysis of Mo-Sn catalysts with different Mo contents

    CatalystOOHOadOlatOOH/OTotalOad/OTotalOlat/OTotal
    Mo2Sn1532.35531.35530.800.170.310.52
    Mo1Sn2532.30531.36530.900.240.340.42
    Mo1Sn4532.39531.39530.890.280.380.34
    Mo1Sn8523.40531.30530.840.320.320.36
    Mo1Sn20532.32531.30530.740.330.310.36
    下载: 导出CSV
  • [1] LIU X M, LU G Q, YAN Z F, YAN Z F, JORGE B. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Ind Eng Chem Res,2003,42(25):6518−6530. doi: 10.1021/ie020979s
    [2] GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catal,2011,1(4):365−384. doi: 10.1021/cs200055d
    [3] BEHRENS M, STUDT F, KASATKIN I, KUHL S, HAVECKER M, ABILD-PEDERERSEN F, ZANDER S, GIRGSDIES F, KURR P, KNIEP B L, TOVAR M, FISCHER R W, NORSKOV J K, SCHLOGL R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science,2012,336(3):893−897.
    [4] TIAN P, WEI Y, YE M, LIU Z M. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal,2015,5(3):1922−1938. doi: 10.1021/acscatal.5b00007
    [5] MARCINIAK A A, ALVES O C, APPEL L G, MOTA J A. Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: Role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent[J]. J Catal,2019,371(1):88−95.
    [6] YANG Z, FENG J, CHENG H, LIU Y X, JIANG J C. Directional depolymerization of lignin into high added-value chemical with synergistic effect of binary solvents[J]. Bioresour Technol,2021,321(12):124−440.
    [7] LI S, PENG D, YU J. Morphologically controllable Li plating with stable electrochemistry realized in a newly developed DOL-DMM electrolyte system on Au-modified Cu current collector[J]. Ionics,2020,26(8):3979−3988. doi: 10.1007/s11581-020-03527-3
    [8] BADMAEV S D, SMORYGINA A S, PAUKSHTIS E A, BELYAEV V D, SOBYANIN V A, PARMON V N. Gas-phase carbonylation of dimethoxymethane to methyl methoxyacetate on solid acids: The effect of acidity on the catalytic activity[J]. Kinet Catal,2018,59(1):99−103. doi: 10.1134/S0023158418010020
    [9] CHONG J M, SHEN L X. Preparation of chloromethyl methyl ether revisited[J]. Synth Commun,1998,28(15):2801−2806. doi: 10.1080/00397919808004855
    [10] NOUGUIER R, MIGNON V, GRAS J. Synthesis of methylene acetals in the D-glucose, D-galactose, D-mannose, and D-fructose series by an improved transacetalation reaction from dimethoxymethane[J]. Carbohydr Res,1995,277(2):339−345. doi: 10.1016/0008-6215(95)00218-I
    [11] YANG Z, FENG J, CHENG H, LIU Y X, JIAN J C. Directional depolymerization of lignin into high added-value chemical with synergistic effect of binary solvents[J]. Bioresour Technol,2021,321(1):124440.
    [12] WANG J, LIU J, SONG H, CHEN J. Heteropolyacids as efficient catalysts for the synthesis of precursors to ethylene glycol by the liquid-phase carbonylation of dimethoxymethane[J]. Chem Lett,2015,44(6):806−808. doi: 10.1246/cl.150131
    [13] 杨奇. 钼锡催化剂上二甲醚低温氧化机理研究[D]. 北京: 中国科学院大学, 2019.

    YANG Qi. Study on the mechanism of the low-temperature oxidation of dimethyl ether over MoO3-SnO2 catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2019.
    [14] LI M, LONG Y, DENG Z, ZHANG H, YANG X G, WANG G Y. Ruthenium trichloride as a new catalyst for selective production of dimethoxymethane from liquid methanol with molecular oxygen as sole oxidant[J]. Catal Commun,2015,68(4):46−48.
    [15] LIU H C, IGLESIA E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12−nPO40 keggin structures[J]. J Phys Chem B,2003,107(39):10840−10847. doi: 10.1021/jp0301554
    [16] FU Y, SHEN J. Selective oxidation of methanol to dimethoxymethane under mild conditions over V2O5/TiO2 with enhanced surface acidity[J]. Chem Commun,2007,21(21):2172−2174.
    [17] TAO M, WANG H, BIN L, ZHAO J X, CAI Q H. Highly selective oxidation of methanol to dimethoxymethane over $ {\rm{SO}}_4^{2 - } $-V2O5-ZrO2[J]. New J Chem,2017,41(16):8370−8376. doi: 10.1039/C7NJ01295K
    [18] CHEN S, MA X. The role of oxygen species in the selective oxidation of methanol to dimethoxymethane over VOx/TS-1 catalyst[J]. J Ind Eng Chem,2017,45(9):296−300.
    [19] AI M. The production of methyl formate by the vapor-phase oxidation of methanol[J]. J Catal,1982,21(77):279−288.
    [20] LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, Tan Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem,2015,17(2):1057−1064. doi: 10.1039/C4GC01591F
    [21] ZHANG Z Z, ZHANG Q D, JIA L, WANG W F, SHAO P T, WANG P, HE X, HAN Y Z, TSUBAKI N, TAN Y S. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol,2016,15(6):6109−6117.
    [22] 杨奇, 高秀娟, 冯茹, 李明杰, 张俊峰, 张清德, 韩怡卓, 谭猗生. 水热合成的MoO3-SnO2催化剂催化氧化二甲醚的性能研究[J]. 燃料化学学报,2019,47(8):934−941. doi: 10.3969/j.issn.0253-2409.2019.08.005

    YANG Qi, GAO Xiu-juan, FENG Ru, LI Ming-jie, ZHANG Jun-feng, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. J Fuel Chem Technol,2019,47(8):934−941. doi: 10.3969/j.issn.0253-2409.2019.08.005
    [23] LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal,2003,217(1):222−232.
    [24] GONCALVES F, MEDEIROS P R S, EON J G, APPEL L G. Active sites for ethanol oxidation over SnO2-supported molybdenum oxides[J]. Appl Catal A: Gen,2000,193(1/2):195−202.
    [25] 陈文龙, 刘海超. 甲醇选择氧化金属氧化物催化剂的结构与其催化性能的关系[J]. 物理化学学报,2012,28(10):2315−2356. doi: 10.3866/PKU.WHXB201209146

    CHEN Wen-long, LIU Hai-chao. Relationship between the structures of metal oxide catalysts and their properties in selective oxidation of methanol[J]. Acta Phys-Chim Sin,2012,28(10):2315−2356. doi: 10.3866/PKU.WHXB201209146
    [26] HANG Z Z, ZHANG Q D, JIA L Y, WANG W F, ZHANG T, HAN Y Z, TSUBAKI N, TAN Y S. Effects f tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ther under mild conditions[J]. Catal Sci Technol,2016,6(9):2975−2983. doi: 10.1039/C5CY01569C
    [27] YANG J, XIAO X, CHEN P, ZHU K, CHENG K, YE K, WANG G L, CAO D X, YAN J. Creating oxygen-vacancies in MoO3−x nanobelts toward high volumetric energy-density asymmetric superercapacitors with long lifespan[J]. Nano Energy,2019,58(1):455−465.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  9
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-04-21
  • 网络出版日期:  2021-05-12

目录

    /

    返回文章
    返回