留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni对MoS2基催化剂活性相及加氢脱氮脱硫性能的影响

刘娟 李文英 冯杰 高翔

刘娟, 李文英, 冯杰, 高翔. Ni对MoS2基催化剂活性相及加氢脱氮脱硫性能的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60105-6
引用本文: 刘娟, 李文英, 冯杰, 高翔. Ni对MoS2基催化剂活性相及加氢脱氮脱硫性能的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60105-6
LIU Juan, LI Wen-ying, FENG Jie, GAO Xiang. Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60105-6
Citation: LIU Juan, LI Wen-ying, FENG Jie, GAO Xiang. Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60105-6

Ni对MoS2基催化剂活性相及加氢脱氮脱硫性能的影响

doi: 10.1016/S1872-5813(21)60105-6
基金项目: 国家自然科学基金(22038008)和国家重点研发计划重点专项(2016YFB0600305)资助
详细信息
    作者简介:

    刘娟:liujuan7078@link.tyut.edu.cn

    通讯作者:

    Tel:86-0351-6018453,E-mail:ying@tyut.edu.cn

  • 中图分类号: TQ426

Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts

Funds: The project was supported by National Natural Science Foundation of China (22038008) and National Key Research and Development Plan Projects of China (2016YFB0600305)
  • 摘要: 为了获得较多高活性II型MoS2活性相,采用四硫代钼酸铵原位热分解法制备了MoS2基催化剂,对比分析了Ni源引入方式和热分解气氛对MoS2活性相微观结构、表面元素化学状态和加氢脱氮脱硫性能等的影响。结果表明,同时引入Mo源和Ni源原位沉淀生成无定形NiMoS4后,再热分解有利于Ni取代MoS2片晶边缘的Mo原子,被修饰后的MoS2片晶保持较高的分散度、适宜的长度(3−5 nm)和堆叠层数(2−4层),从而在边缘暴露较多具有加氢和氢解活性的rim和corner活性位点。热分解气氛H2比N2更有利于Ni在热分解过程中取代MoS2边缘的Mo原子,形成更多II型Ni-Mo-S活性结构,有利于喹啉和二苯并噻吩的吸附活化和加氢反应。当加氢反应温度340 ℃、氢压3 MPa、重时空速23.4 h−1、氢油比为600和使用0.1 g NMS-H2催化剂时,喹啉加氢脱氮转化率达23.8%,二苯并噻吩加氢脱硫转化率达93.3%。
  • 图  1  两种MoS2活性相结构示意图

    Figure  1  Schematic of two types of MoS2 structure

    图  2  载体和催化剂的XRD谱图

    Figure  2  XRD patterns of support and catalysts

    图  3  催化剂NMS-N2(a)、NMS-H2(b)和NMS-T-N2(c)表面MoS2的HRTEM照片

    Figure  3  HRTEM images of MoS2 over NMS-N2 (a), NMS-H2 (b) and NMS-T-N2 (c) catalysts

    图  4  硫化物催化剂表面MoS2片晶长度(a)和堆叠层数(b)的统计分析

    Figure  4  Histograms of slab length (a) and stack number (b) of MoS2 over the sulfide catalyst

    图  5  硫化物催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of the sulfide catalysts

    图  6  载体和催化剂的NH3-TPD谱图

    Figure  6  NH3-TPD profiles of the support and sulfide catalysts

    图  7  Mo 3d(a)和Ni 2p(b)的XPS谱图

    Figure  7  XPS spectra of Mo 3d (a) and Ni 2p (b)

    表  1  样品的物理结构性质

    Table  1  Physical structure properties of sample

    SampleSpecific surface area/(m2·g−1)Total pore volume/(cm3·g−1)Most probable pore size/nm
    γ-Al2O32881.0314.3
    NMS-N22040.5711.3
    NMS-H22060.6011.7
    NMS-T-N21980.6212.6
    下载: 导出CSV

    表  2  MoS2片晶平均长度LA、平均堆叠层数NA、分散度fMo和不同活性位点的比例

    Table  2  Average length L A, stack number N A, Mo atoms dispersion and fraction of different active sites

    CatalystLA/nmNAfMoRfefrfc
    NMS-N23.94.20.281.090.2480.2280.059
    NMS-H23.73.40.290.580.2570.4430.073
    NMS-T-N24.96.60.231.330.2130.1600.038
    下载: 导出CSV

    表  3  Mo 3d和Ni 2p信号的分峰拟合

    Table  3  Deconvolution results of Mo 3d and Ni 2p signals

    SampleMosulf/
    %
    Mo distribution/
    %
    Nisulf/
    %
    Ni distribution/
    %
    Mo4+Mo5+Mo6+NiSxNiMoSNi2+
    NMS-N24040134771155629
    NMS-H24747143987167113
    NMS-T-N23939174466115534
    下载: 导出CSV

    表  4  不同催化剂的喹啉HDN性能和选择性

    Table  4  Quinoline HDN activity and selectivity over different catalyst

    CatalystxHDN/%Product selectivity/%Route ratio
    PCHPCHEPBDHQ58THQOPA14THQ(PCH + PCHE)/PB
    NMS-N212.89.71.43.89.625.73.546.22.92
    NMS-H223.817.82.26.510.324.94.733.43.07
    NMS-T-N28.66.31.32.98.220.43.357.52.62
    下载: 导出CSV

    表  5  不同催化剂的二苯并噻吩HDS性能和选择性

    Table  5  Dibenzothiophene HDS activity and selectivity over different catalyst

    CatalystxHDS/%Product selectivity/%Route ratio
    BPCHBBCHBP/(CHB + BCH)
    NMS-N291.674.824.01.22.96
    NMS-H293.365.330.83.91.88
    NMS-T-N281.980.519.10.44.12
    下载: 导出CSV
  • [1] 刘敏, 陈贵锋, 王永刚, 赵鹏, 曲思建. 白石湖煤液化粗油加氢精制过程硫、氮化合物转化规律[J]. 燃料化学学报,2019,47(7):870−875. doi: 10.3969/j.issn.0253-2409.2019.07.012

    LIU Min, CHEN Gui-feng, WANG Yong-gang, ZHAO Peng, QU Si-jian. Conversion of sulphur and nitrogen compounds in hydrofining process of Baishihu coal liquefaction oil[J]. J Fuel Chem Technol,2019,47(7):870−875. doi: 10.3969/j.issn.0253-2409.2019.07.012
    [2] VÁZQUEZ-GARRIDO I, LÓPEZ-BENÍTEZ A, BERHAULT G, GUEVARA-LARA A. Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions[J]. Fuel,2019,236:55−64. doi: 10.1016/j.fuel.2018.08.053
    [3] LIU Z, HAN W, HU D, SUN S, HU A, WANG Z, JIA Y, ZHAO X, YANG Q. Effects of Ni-Al2O3 interaction on NiMo/Al2O3 hydrodesulfurization catalysts[J]. J Catal,2020,387:62−72. doi: 10.1016/j.jcat.2020.04.008
    [4] EIJSBOUTS S, LI X, JUAN-ALCANIZ J, VAN DEN OETELAAR L C A, BERGWERFF J A, LOOS J, CARLSSON A, VOGT E T C. Electron tomography reveals the active phase-support interaction in sulfidic hydroprocessing catalysts[J]. ACS Catal,2017,7(7):4817−4821. doi: 10.1021/acscatal.7b01201
    [5] GUTIÉRREZ O Y, KLIMOVA T. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4, 6-DMDBT[J]. J Catal,2011,281(1):50−62. doi: 10.1016/j.jcat.2011.04.001
    [6] GE H, WEN X-D, RAMOS M A, CHIANELLI R R, WANG S, WANG J, QIN Z, LYU Z, LI X. Carbonization of ethylenediamine coimpregnated CoMo/Al2O3 catalysts sulfided by organic sulfiding agent[J]. ACS Catal,2014,4(8):2556−2565. doi: 10.1021/cs500477x
    [7] BARA C, LAMIC-HUMBLOT A-F, FONDA E, GAY A-S, TALEB A-L, DEVERS E, DIGNE M, PIRNGRUBER G D, CARRIER X. Surface-dependent sulfidation and orientation of MoS2 slabs on alumina-supported model hydrodesulfurization catalysts[J]. J Catal,2016,344:591−605. doi: 10.1016/j.jcat.2016.10.001
    [8] BOUWENS S M A M, VANZON F B M, VANDIJK M P, VANDERKRAAN A M, DEBEER V H J, VANVEEN J A R, KONINGSBERGER D C. On the structural differences between alumina-supported CoMoS type I and alumina-, silica-, and carbon-supported CoMoS type II phases studied by XAFS, MES, and XPS[J]. J Catal,1994,146(2):375−393. doi: 10.1006/jcat.1994.1076
    [9] OKAMOTO Y, KATO A, USMAN, RINALDI N, FUJIKAWA T, KOSHIKA H, HIROMITSU I, KUBOTA T. Effect of sulfidation temperature on the intrinsic activity of Co-MoS2 and Co-WS2 hydrodesulfurization catalysts[J]. J Catal,2009,265(2):216−228. doi: 10.1016/j.jcat.2009.05.003
    [10] SÁNCHEZ J, MORENO A, MONDRAGÓN F, SMITH K J. Morphological and structural properties of MoS2 and MoS2-amorphous silica-alumina dispersed catalysts for slurry-phase hydroconversion[J]. Energy Fuels,2018,32(6):7066−7077. doi: 10.1021/acs.energyfuels.8b01081
    [11] MELLO M D D, BRAGGIO F D A, MAGALHÃES B D C, ZOTIN J L, SILVA M A P D. Effects of phosphorus content on simultaneous ultradeep HDS and HDN reactions over NiMoP/alumina catalysts[J]. Ind Eng Chem Res,2017,56(37):10287−10299. doi: 10.1021/acs.iecr.7b02718
    [12] BADOGA S, DALAI A K, ADJAYE J, HU Y. Insights into individual and combined effects of phosphorus and EDTA on performance of NiMo/MesoAl2O3 catalyst for hydrotreating of heavy gas oil[J]. Fuel Process Technol,2017,159:232−246. doi: 10.1016/j.fuproc.2017.01.034
    [13] 王广建, 赵强, 陈国良, 王建爽, 石林. 柠檬酸引入方式对CoMo/TiO2-Al2O3催化剂加氢脱硫性能的影响[J]. 工业催化,2019,27(7):54−60. doi: 10.3969/j.issn.1008-1143.2019.07.010

    WANG Guang-jian, ZHAO Qiang, CHEN Guo-liang, WANG Jian-shuang, SHI Lin. Effect of citric acid introduction methods on hydrodesulfurization performance of CoMo/TiO2-Al2O3 catalysts[J]. Ind Catal,2019,27(7):54−60. doi: 10.3969/j.issn.1008-1143.2019.07.010
    [14] SOLNICKOVA L. Nano-sized carbon-supported molybdenum disulphide particles for hydrodesulphurization[D]. Vancouver: The University of British Columbia, 2016.
    [15] GANIYU S A, ALHOOSHANI K, ALI S A. Single-pot synthesis of Ti-SBA-15-NiMo hydrodesulfurization catalysts: Role of calcination temperature on dispersion and activity[J]. Appl Catal B: Environ,2017,203:428−441. doi: 10.1016/j.apcatb.2016.10.052
    [16] VARAKIN A N, MOZHAEV A V, PIMERZIN A A, NIKULSHIN P A. Comparable investigation of unsupported MoS2 hydrodesulfurization catalysts prepared by different techniques: Advantages of support leaching method[J]. Appl Catal B: Environ,2018,238:498−508. doi: 10.1016/j.apcatb.2018.04.003
    [17] NIEFIND F, BENSCH W, DENG M, KIENLE L, CRUZ-REYES J, GRANADOS J M D V. Co-promoted MoS2 for hydrodesulfurization: New preparation method of MoS2 at room temperature and observation of massive differences of the selectivity depending on the activation atmosphere[J]. Appl Catal A: Gen,2015,497:72−84. doi: 10.1016/j.apcata.2015.03.003
    [18] SUN K, GUO H, JIAO F, CHAI Y, LI Y, LIU B, MINTOVA S, LIU C. Design of an intercalated Nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction[J]. Appl Catal B: Environ,2021,286:119907. doi: 10.1016/j.apcatb.2021.119907
    [19] LIU B, LIU L, CHAI Y, ZHAO J, LI Y, LIU D, LIU Y, LIU C. Effect of sulfiding conditions on the hydrodesulfurization performance of the ex-situ presulfided CoMoS/γ-Al2O3 catalysts[J]. Fuel,2018,234:1144−1153. doi: 10.1016/j.fuel.2018.08.001
    [20] LAI W, CHEN Z, ZHU J, YANG L, ZHENG J, YI X, FANG W. NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts[J]. Nanoscale,2016,8(6):3823−3833. doi: 10.1039/C5NR08841K
    [21] PELARDY F, SANTOS A S, DAUDIN A, DEVERS E, BELIN T, BRUNET S. Sensitivity of supported MoS2-based catalysts to carbon monoxide for selective HDS of FCC gasoline: Effect of nickel or cobalt as promoter[J]. Appl Catal B: Environ,2017,206:24−34. doi: 10.1016/j.apcatb.2016.12.057
    [22] BREMMER G M, HAANDEL L, HENSEN E J M, FRENKEN J W M, KOOYMAN P J. The effect of oxidation and resulfidation on (Ni/Co)MoS2 hydrodesulfurisation catalysts[J]. Appl Catal B: Environ,2019,243:145−150. doi: 10.1016/j.apcatb.2018.10.014
    [23] RANGARAJAN S, MAVRIKAKIS M. On the preferred active sites of promoted MoS2 for hydrodesulfurization with minimal organonitrogen inhibition[J]. ACS Catal,2017,7(1):501−509. doi: 10.1021/acscatal.6b02735
    [24] BERHAULT G, MEHTA A, PAVEL A C, YANG J, RENDON L, YÁCAMAN M J, ARAIZA L C, MOLLER A D, CHIANELLI R R. The role of structural carbon in transition metal sulfides hydrotreating catalysts[J]. J Catal,2001,498:9−19.
    [25] LIU J, LI W-Y, FENG J, GAO X, LUO Z-Y. Promotional effect of TiO2 on quinoline hydrodenitrogenation activity over Pt/γ-Al2O3 catalysts[J]. Chem Eng Sci,2019,207:1085−1095. doi: 10.1016/j.ces.2019.07.040
    [26] LIU J, LI W-Y, FENG J, GAO X. Effects of Fe species on promoting the dibenzothiophene hydrodesulfurization over the Pt/γ-Al2O3 catalysts[J]. Catal Today,2020,. doi: 10.1016/j.cattod.2020.07.035
    [27] DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: The "Rim-Edge" model[J]. J Catal,1994,149(2):414−427. doi: 10.1006/jcat.1994.1308
    [28] KASZTELAN S, TOULHOAT H, GRIMBLOT J, BONNELLE J P. A geometrical model of theactive phase of hydrotreating catalysts[J]. Appl Catal,1984,13(1):127−159. doi: 10.1016/S0166-9834(00)83333-3
    [29] XU J, GUO Y, HUANG T, FAN Y. Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization[J]. Appl Catal B: Environ,2019,244:385−395. doi: 10.1016/j.apcatb.2018.11.065
    [30] ZHOU W, ZHANG Q, ZHOU Y, WEI Q, DU L, DING S, JIANG S, ZHANG Y. Effects of Ga- and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels[J]. Catal Today,2018,305:171−181. doi: 10.1016/j.cattod.2017.07.006
    [31] JIAO J, FU J, WEI Y, ZHAO Z, DUAN A, XU C, LI J, SONG H, ZHENG P, WANG X, YANG Y, LIU Y. Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal-support interaction[J]. J Catal,2017,356:269−282. doi: 10.1016/j.jcat.2017.10.003
    [32] HU C, CREASER D, FOULADVAND S, GRÖNBECK H, SKOGLUNDH M. Methyl crotonate hydrogenation over Pt: Effects of support and metal dispersion[J]. Appl Catal A: Gen,2016,511:106−116. doi: 10.1016/j.apcata.2015.12.003
    [33] ALBERSBERGER S, SHI H, WAGENHOFER M, HAN J, GUTIÉRREZ O Y, LERCHER J A. On the enhanced catalytic activity of acid-treated, trimetallic Ni-Mo-W sulfides for quinoline hydrodenitrogenation[J]. J Catal,2019,380:332−342. doi: 10.1016/j.jcat.2019.09.034
    [34] NGUYEN M-T, TAYAKOUT-FAYOLLE M, CHAINET F, PIRNGRUBER G D, GEANTET C. Use of kinetic modeling for investigating support acidity effects of NiMo sulfide catalysts on quinoline hydrodenitrogenation[J]. Appl Catal A: Gen,2017,530:132−144. doi: 10.1016/j.apcata.2016.11.015
    [35] WANG H, LIU S, SMITH K J. Understanding selectivity changes during hydrodesulfurization of dibenzothiophene on Mo2C/carbon catalysts[J]. J Catal,2019,369:427−439. doi: 10.1016/j.jcat.2018.11.035
    [36] RYDBERG H, DION M, JACOBSON N, SCHRÖDER E, HYLDGAARD P, SIMAK S, LANGRETH D, LUNDQVIST B. Van der waals density functional for layered structures[J]. Phys Rev Lett,2003,91(12):126402. doi: 10.1103/PhysRevLett.91.126402
    [37] BYSKOV L, NØRSKOV J, CLAUSEN B, TOPSØE H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts[J]. J Catal,1999,187(1):109−122. doi: 10.1006/jcat.1999.2598
    [38] ZHENG P, LI T, CHI K, XIAO C, FAN J, WANG X, DUAN A. DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions[J]. Appl Catal B: Environ,2019,257:117937. doi: 10.1016/j.apcatb.2019.117937
    [39] GUTIÉRREZ O, HRABAR A, HEIN J, YU Y, HAN J, LERCHER J. Ring opening of 1, 2, 3, 4-tetrahydroquinoline and decahydroquinoline on MoS2/γ-Al2O3 and Ni-MoS2/γ-Al2O3[J]. J Catal,2012,295:155−168. doi: 10.1016/j.jcat.2012.08.003
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  29
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-23
  • 修回日期:  2021-04-30
  • 网络出版日期:  2021-06-03

目录

    /

    返回文章
    返回