留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co@NC选择性催化木糖氢解制备1,2–二元醇

梁缘 李志坚 刘琪英 马隆龙

梁缘, 李志坚, 刘琪英, 马隆龙. Co@NC选择性催化木糖氢解制备1,2–二元醇[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60125-1
引用本文: 梁缘, 李志坚, 刘琪英, 马隆龙. Co@NC选择性催化木糖氢解制备1,2–二元醇[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60125-1
LIANG Yuan, LI Zhi-jian, LIU Qi-ying, MA Long-long. Selective xylose hydrogenolysis to 1,2–diols using Co@NC catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60125-1
Citation: LIANG Yuan, LI Zhi-jian, LIU Qi-ying, MA Long-long. Selective xylose hydrogenolysis to 1,2–diols using Co@NC catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60125-1

Co@NC选择性催化木糖氢解制备1,2–二元醇

doi: 10.1016/S1872-5813(21)60125-1
基金项目: 国家重点科研项目(2018YFB1501402), 国家自然科学基金(51976220)和广东省“珠江人才计划”本土创新科研团队项目(2017BT01N092)资助
详细信息
    作者简介:

    梁缘:ly0476@mail.ustc.edu.cn

    通讯作者:

    Email: liuqy@ms.giec.ac.cn (Q. Liu)

    mall@ms.giec.ac.cn (L. Ma)

Selective xylose hydrogenolysis to 1,2–diols using Co@NC catalysts

Funds: This work was supported by the National Key R&D Program of China (2018YFB1501402), the National Natural Science Foundation of China (51976220) and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N092)
  • 摘要: 本研究采用bottom-up法,制备了具有加氢和异构活性的碳包裹金属催化剂Co@NC,用于催化木糖氢解制备1,2–二元醇。结合XRD、TEM、XPS等表征手段对比了不同焙烧温度制备的Co@NC催化剂的物理和化学性质。研究发现,600 ℃焙烧的Co@NC催化剂具有最高的二元醇的总收率 (70.1%),其中,乙二醇、1,2–丙二醇和1,2–戊二醇的收率分别达到17.6%、25.1%和27.4%。机理研究表明,N的掺杂为Co@NC提供了碱性位点,在碱的催化作用下促进木糖向木酮糖的异构,再通过Retro-aldol反应得到乙醇醛和丙酮醇中间产物,最后经加氢得到乙二醇和1,2–丙二醇。1,2–戊二醇来源于木糖的加氢脱氧,其产率高于文献报道的最佳结果。本研究工作发展的水热稳定性优异的Co@NC催化剂为生物质高效制备1,2–二元醇提供了新的研究思路。
  • 图  1  不同温度下煅烧的Co@NC催化剂的XRD谱图

    Figure  1  XRD patterns of Co@NC prepared at different calcination temperature

    图  2  不同焙烧温度Co@NC催化剂的TEM图

    Figure  2  TEM images of Co@NC synthesized at (a,b) 500 ℃, (c,d) 600 ℃, (e,f) 700 ℃ and (g,h) 800 ℃

    图  3  不同温度焙烧的Co@NC催化剂的XPS谱图

    Figure  3  XPS spectra of Co@NC prepared at different temperature

    图  4  不同焙烧温度Co@NC催化剂的(a) N 1s 能谱和(b) Co 2p 能谱图

    Figure  4  (a) N 1s and (b) Co 2p spectra of Co@NC synthesized at different temperature

    图  5  不同焙烧温度Co@NC催化剂的(a)氮气吸附-脱附曲线和(b)孔径分布

    Figure  5  (a) Nitrogen adsorption-desorption isotherms and (b) the pore size distribution of Co@NC catalysts calcinated at different temperature

    图  6  不同焙烧温度Co@NC的FT-IR谱图

    Figure  6  FT-IR spectra of Co@NC catalysts synthesized at different temperature

    图  7  不同焙烧温度Co@NC催化剂的TG-MS谱图

    Figure  7  TG-MS analysis of Co@NC synthesized at different temperature

    图  8  Co@NC分解过程中出口气体的检测

    Figure  8  Outlet gases from the decomposition of Co@NC

    图  9  不同焙烧温度Co@NC催化剂的Raman谱图

    Figure  9  Raman spectra of Co@NC calcinated at different temperature

    图  10  Co@NC-600催化剂上不同反应条件下木糖氢解反应性能

    Figure  10  Effect of (a) reaction temperature, (b) reaction time and (c) H2 pressure on the selective hydrogenolysis of xylose over Co@NC-600

    Reaction conditions: 0.2 g xylose, 0.07 g catalysts, 20 mL De–ionized water. EG: ethylene glycol; 1,2–PG: 1,2–propylene glycol; 1,2–PeD: 1,2–pentanediol; CPO: cyclopentanone; THFA: tetrahydrofurfuryl alcohol

    图  11  Co@NC催化木糖转化的循环使用性能

    Figure  11  Cycle test of Co@NC for xylose conversion

    Reaction conditions: 0.2 g xylose, 0.07 g catalysts, 20 mL De-ionized water, reaction temperature: 200 ℃, reaction time: 3 h, H2 pressure: 3 MPa. EG: ethylene glycol; 1,2–PG: 1,2–propylene glycol; 1,2–PeD: 1,2–pentanediol; CPO: cyclopentanone; Ac: acetol; THFA: tetrahydrofurfuryl alcohol

    图  12  反应前后Co@NC催化剂的TEM照片

    Figure  12  TEM results of (a,b) fresh Co@NC-600, (c,d) spent Co@NC-600 after five runs

    图  13  短反应时间下木糖向木酮糖的异构

    Figure  13  Isomerization of xylose to xylulose at short reaction time

    Reaction conditions: 0.2 g xylose, 0.07 g Co@NC-600, 20 mL de-ionized water. reaction temperature: 180 ℃, N2 pressure: 3 MPa

    图  14  木糖催化氢解的可能反应途径

    Figure  14  Possible reaction route for xylose hydrogenolysis to vicinal diols

    表  1  Co@NC催化剂的BET数据和孔结构参数

    Table  1  BET surface area and pores of Co@NC catalysts

    CatalystBET surface area/(m2·g−1)Pore volume/(cm3·g−1)Pore size/nm
    Co@NC-5003.40.01
    Co@NC-600194.00.503.6
    Co@NC-700275.20.763.3
    Co@NC-800275.30.833.4
    下载: 导出CSV

    表  2  Co@NC催化剂的表面酸/碱量

    Table  2  Surface acid/base amounts of Co@NC catalysts

    CatalystsTotal acid amount/
    (mmol·g−1)
    Weak base amount/
    (mmol·g−1)
    Strong base amount/
    (mmol·g−1)
    Total base amount/
    (mmol·g−1)
    Co@NC-5002.1320.1188.6948.812
    Co@NC-6001.1420.2213.6813.902
    Co@NC-7001.1040.1631.4021.565
    Co@NC-8000.5860.1550.9971.152
    Ni@NC-6003.1620.2184.6494.867
    下载: 导出CSV

    表  3  不同N掺杂碳包裹型催化剂在木糖氢解反应中的催化性能

    Table  3  Xylose conversion to 1,2–diols over different N-doped carbon encapsulated metal catalysts

    CatalystConv./%Yield Cmol/%
    EG1,2–PG1,2–PeDCPOAcTHFA
    Co@NC-500 37.3 0 0 0 0 0 0
    Co@NC-600 98.4 17.6 25.1 27.4 2.0 2.9 3.5
    Co@NC-700 95.1 12.9 11.8 23.4 9.3 17.4 1.8
    Co@NC-800 90.9 6.0 3.5 4.3 3.7 26.1 1.0
    Ni@NC-600 82.4 2.4 8.2 0 15.0 20.5 10.3
    Fe@NC-600 62.9 0 0 0 0 10.5 0
    Reaction conditions: 0.2 g xylose, 0.07 g catalysts, 20 mL de-ionized water, reaction temperature: 200 ℃, reaction time: 3 h, H2 pressure: 3 MPa. EG: ethylene glycol; 1,2–PG: 1,2–propylene glycol; 1,2–PeD: 1,2–pentanediol; CPO: cyclopentanone; Ac: acetol; THFA: tetrahydrofurfuryl alcohol
    下载: 导出CSV

    表  4  不同催化剂上木糖的氢解性能

    Table  4  Xylose hydrogenolysis catalyzed by different catalysts

    CatalystConv./%Yield Cmol/%
    xylitolcyclopentanoneacetol
    Co@C97.596.500
    Ni@C93.790.700
    Fe@C96.485.000
    Co/C99.999.900
    N-AC62.1013.820.4
    Reaction conditions: 0.2 g xylose, 0.07 g catalysts, 20 mL de-ionized water, reaction temperature: 200 ℃, reaction time: 3 h, H2 pressure: 3 MPa. N-AC: N-activated carbon
    下载: 导出CSV

    表  5  1,2–PeD收率与文献对比

    Table  5  Comparison of 1,2–PeD yield in this work with reported references

    CatalystsReaction conditionsYield/%
    Ru/C+ Amberlyst-15165 °C, 6 h, H2O/2-methyltetrahydrofuran, H2: 2.5 MPa10.0%[4]
    Ru/C +Nb2O5150 °C, 4 h, H2O/cyclohexane/γ-valerolactone, H2: 3 MPa19.1%[5]
    This work200 °C, 3 h, H2O, H2: 3 MPa27.4%
    下载: 导出CSV

    表  6  不同原料下的产物分布

    Table  6  Product distribution using various possible intermediates

    SubstrateConv./%Yield Cmol/%
    EG1,2–PG1,2–PeDCPOcyclopentanolAcTHFA
    Xylitol 25.2 1.9 0.8 2.5 0 0 0 0
    Xylulose 92.5 24.4 32.9 7.5 1.0 1.1 8.5 0.5
    Glycolaldehyde 99.9 93.7 0 0 0 0 0 0
    Acetol 98.2 0 95.3 0 0 0 0 0
    Methylglyoxal 95.6 0 39.1 0 0 0 19.3 0
    Furfural 99.9 0 0 0 86.5 10.1 0 0.3
    Furfuryl alcohol 99.9 0 0 0 78.2 13.8 0 3.6
    Glucose 93.5 0 0 0 0 0 8.9 0
    Fructose 96.7 0 10.4 0 0 0 30.1 0
    Reaction conditions: 0.2 g xylose, 0.07 g catalysts, 20 mL De-ionized water, reaction temperature: 200 ℃, reaction time: 3 h, H2 pressure: 3 MPa. EG: ethylene glycol; 1,2–PG: 1,2–propylene glycol; 1,2–PeD: 1,2–pentanediol; CPO: cyclopentanone; Ac: acetol; THFA: tetrahydrofurfuryl alcohol
    下载: 导出CSV
  • [1] KAUR, M.; KUMAR, M.; SACHDEVA, S.; PURI, S. K. Aquatic weeds as the next generation feedstock for sustainable bioenergy production[J]. Bioresour Technol,2018,251:390−402. doi: 10.1016/j.biortech.2017.11.082
    [2] ZHAO, W.; ZHAO, F.; ZHANG, S.; GONG, Q.; CHEN, G. Ethanol production by simultaneous saccharification and cofermentation of pretreated corn stalk[J]. J Basic Microbiol,2019,59(7):744−753. doi: 10.1002/jobm.201900117
    [3] 许彦娟, 糠醛催化加氢制备1, 2-戊二醇的研究[D]. 杭州: 浙江大学, 2014.

    Xu Yan-juan, Study on catalytic hydrogenolysis of furfuryl alcohol into 1, 2-pentanediol [D], Hangzhou: Zhejiang University, 2014
    [4] ORDOMSKY, V. V.; SCHOUTEN, J. C.; VAN DER SCHAAF, J.; NIJHUIS, T. A. Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural[J]. Appl Catal A: Gen,2013,451:6−13. doi: 10.1016/j.apcata.2012.11.013
    [5] WANG, N.; CHEN, Z.; LIU, L. Acid catalysis dominated suppression of xylose hydrogenation with increasing yield of 1,2-pentanediol in the acid-metal dual catalyst system[J]. Appl Catal A: Gen,2018,561:41−48. doi: 10.1016/j.apcata.2018.05.019
    [6] SUN, J.; LIU, H. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts[J]. Green Chem,2011,13(1):135−142. doi: 10.1039/C0GC00571A
    [7] VIJAYA SHANTHI, R.; MAHALAKSHMY, R.; THIRUNAVUKKARASU, K.; SIVASANKER, S. Hydrogenolysis of sorbitol over Ni supported on Ca- and Ca(Sr)-hydroxyapatites[J]. Mol Catal,2018,451:170−177. doi: 10.1016/j.mcat.2017.12.031
    [8] DENG, J.; DENG, D.; BAO, X. Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective[J]. Adv Mater,2017,29(43):2100−2104.
    [9] GONG, W.; CHEN, C.; ZHANG, H.; WANG, G.; ZHAO, H. Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase[J]. Catal Sci Technol,2018,8(21):5506−5514. doi: 10.1039/C8CY01488D
    [10] AIJAZ, A.; MASA, J.; ROSLER, C.; XIA, W.; WEIDE, P.; BOTZ, A. J.; FISCHER, R. A.; SCHUHMANN, W.; MUHLER, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode[J]. Angew Chem Int Ed Engl,2016,55(12):4087−4091. doi: 10.1002/anie.201509382
    [11] XU, X. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for na-ion batteries[J]. Adv Funct Mater,2018,28(16):1707573. doi: 10.1002/adfm.201707573
    [12] TU, Y.; REN, P.; DENG, D.; BAO, X. Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation[J]. Nano Energy,2018,52:494−500. doi: 10.1016/j.nanoen.2018.07.062
    [13] FANG, L. J.; WANG, X. L.; LI, Y. H.; LIU, P. F.; WANG, Y. L.; ZENG, H. D.; YANG, H. G. Nickel nanoparticles coated with graphene layers as efficient co-catalyst for photocatalytic hydrogen evolution[J]. Appl Catal B: Environ,2017,200:578−584. doi: 10.1016/j.apcatb.2016.07.033
    [14] AI, L.; SU, J.; WANG, M.; JIANG, J. Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: An efficient bifunctional electrocatalyst for overall water splitting[J]. ACS Sustain Chem Eng,2018,6(8):9912−9920. doi: 10.1021/acssuschemeng.8b01120
    [15] DUAN, X.; AO, Z.; SUN, H.; INDRAWIRAWAN, S.; WANG, Y.; KANG, J.; LIANG, F.; ZHU, Z. H.; WANG, S. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis[J]. ACS Appl Mater Inter,2015,7(7):4169−4178. doi: 10.1021/am508416n
    [16] LIU, B.; DAI, W.; LIANG, Z.; YE, J.; OUYANG, L. Fe/N/C carbon nanotubes with high nitrogen content as effective non-precious catalyst for oxygen reduction reaction in alkaline medium[J]. Int J Hydrogen Energy,2017,42(9):5908−5915. doi: 10.1016/j.ijhydene.2016.12.043
    [17] FENG, X.; BO, X.; GUO, L. CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions[J]. J Power Sources,2018,389:249−259. doi: 10.1016/j.jpowsour.2018.04.027
    [18] KANG, J.; DUAN, X.; WANG, C.; SUN, H.; TAN, X.; TADE, M. O.; WANG, S. Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability[J]. Chem Eng J,2018,332:398−408. doi: 10.1016/j.cej.2017.09.102
    [19] ZHUANG, M.; OU, X.; DOU, Y.; ZHANG, L.; ZHANG, Q.; WU, R.; DING, Y.; SHAO, M.; LUO, Z. Polymer-embedded Fabrication of Co 2P nanoparticles encapsulated in N,P-doped graphene for hydrogen generation[J]. Nano Lett,2016,16(7):4691−4698. doi: 10.1021/acs.nanolett.6b02203
    [20] SI, Y.; ZHANG, Y.; LU, L.; ZHANG, S.; CHEN, Y.; LIU, J.; JIN, H.; HOU, S.; DAI, K.; SONG, W. Boosting visible light photocatalytic hydrogen evolution of graphitic carbon nitride via enhancing it interfacial redox activity with cobalt/nitrogen doped tubular graphitic carbon[J]. Appl Catal B: Environ,2018,225:512−518. doi: 10.1016/j.apcatb.2017.12.010
    [21] YAO, Y.; CHEN, H.; LIAN, C.; WEI, F.; ZHANG, D.; WU, G.; CHEN, B.; WANG, S. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal[J]. J Hazard Mater,2016,314:129−139. doi: 10.1016/j.jhazmat.2016.03.089
    [22] LIU, Q.; WANG, H.; XIN, H.; WANG, C.; YAN, L.; WANG, Y.; ZHANG, Q.; ZHANG, X.; XU, Y.; HUBER, G. W.; MA, L. Selective cellulose hydrogenolysis to ethanol using Ni@C combined with phosphoric acid catalysts[J]. ChemSusChem,2019,12(17):3977−3987. doi: 10.1002/cssc.201901110
    [23] ZENG, M.; LIU, Y.; ZHAO, F.; NIE, K.; HAN, N.; WANG, X.; HUANG, W.; SONG, X.; ZHONG, J.; LI, Y. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries[J]. Adv Funct Mater,2016,26(24):4397−4404. doi: 10.1002/adfm.201600636
    [24] ZHANG, X.; LIU, S.; ZANG, Y.; LIU, R.; LIU, G.; WANG, G.; ZHANG, Y.; ZHANG, H.; ZHAO, H. Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media[J]. Nano Energy,2016,30:93−102. doi: 10.1016/j.nanoen.2016.09.040
    [25] MO, Z.; XU, H.; CHEN, Z.; SHE, X.; SONG, Y.; LIAN, J.; ZHU, X.; YAN, P.; LEI, Y.; YUAN, S.; LI, H. Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting[J]. Appl Catal B: Environ,2019,241:452−460. doi: 10.1016/j.apcatb.2018.08.073
    [26] XIU, Z.; WANG, H.; CAI, C.; LI, C.; YAN, L.; WANG, C.; LI, W.; XIN, H.; ZHU, C.; ZHANG, Q.; LIU, Q.; MA, L. Ultrafast glycerol conversion to lactic acid over magnetically recoverable Ni-NiOx@C catalysts[J]. Ind Eng Chem Res,2020,59(21):9912−9925. doi: 10.1021/acs.iecr.0c01145
    [27] JIN, L.; ZHAO, X.; QIAN, X.; DONG, M. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes[J]. J Colloid Interface Sci,2018,509:245−253. doi: 10.1016/j.jcis.2017.09.002
    [28] LIU, C.; SHANG, Y.; QI, H.; WANG, X.; GUI, J.; ZHANG, C.; ZHU, Y.; LI, Y. Effect of the ZrO2 phase on Pd-based bifunctional catalysts for the hydrogenolysis of glucose[J]. Catal Commun,2019,128:105688. doi: 10.1016/j.catcom.2019.04.020
    [29] FANG, R.; LIU, H.; LUQUE, R.; LI, Y. Efficient and selective hydrogenation of biomass-derived furfural to cyclopentanone using Ru catalysts[J]. Green Chem,2015,17(8):4183−4188. doi: 10.1039/C5GC01462J
    [30] LANGE, J. P.; WADMAN, S. H. Furfural to 1,4-butanediol/tetrahydrofuran - a detailed catalyst and process design[J]. ChemSusChem,2020,13(19):5329−5337. doi: 10.1002/cssc.202001376
    [31] CORMA, A.; DE LA TORRE, O.; RENZ, M.; VILLANDIER, N. Production of high-quality diesel from biomass waste products[J]. Angew Chem Int Ed Engl,2011,50(10):2375−2378. doi: 10.1002/anie.201007508
    [32] SONG, H.; WANG, P.; LI, S.; DENG, W.; LI, Y.; ZHANG, Q.; WANG, Y. Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles[J]. Chem Commun (Camb),2019,55(30):4303−4306. doi: 10.1039/C9CC00619B
    [33] GU, M.; SHEN, Z.; YANG, L.; DONG, W.; KONG, L.; ZHANG, W.; PENG, B. Y.; ZHANG, Y. Reaction route selection for cellulose hydrogenolysis into C2/C3 glycols by ZnO-modified Ni-W/beta-zeolite catalysts[J]. Sci Rep,2019,9(1):11938. doi: 10.1038/s41598-019-48103-6
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 修回日期:  2021-06-10
  • 网络出版日期:  2021-07-12

目录

    /

    返回文章
    返回