留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phosphorous Modified V-MCM-41 catalysts for Propane Dehydrogenation

WANG Xiao-sheng YANG Tao LI Qin LIU Yu-xiang DING Yong-chuan

王晓胜, 杨韬, 李芹, 刘毓翔, 丁永川. P改性V-MCM-41催化剂的合成及其在丙烷直接脱氢中的应用[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60138-X
引用本文: 王晓胜, 杨韬, 李芹, 刘毓翔, 丁永川. P改性V-MCM-41催化剂的合成及其在丙烷直接脱氢中的应用[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60138-X
WANG Xiao-sheng, YANG Tao, LI Qin, LIU Yu-xiang, DING Yong-chuan. Phosphorous Modified V-MCM-41 catalysts for Propane Dehydrogenation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60138-X
Citation: WANG Xiao-sheng, YANG Tao, LI Qin, LIU Yu-xiang, DING Yong-chuan. Phosphorous Modified V-MCM-41 catalysts for Propane Dehydrogenation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60138-X

P改性V-MCM-41催化剂的合成及其在丙烷直接脱氢中的应用

doi: 10.1016/S1872-5813(21)60138-X
详细信息
  • 中图分类号: O646

Phosphorous Modified V-MCM-41 catalysts for Propane Dehydrogenation

More Information
  • 摘要: 钒基催化剂的脱氢性能与表面氧钒物种的形态密切相关。为了进一步增强传统原位合成的V-MCM-41催化剂上钒物种的分散性,本文通过在制备过程中添加有机磷前驱物的方法对其行改性。采用XRD、N2吸附-脱附、TPR、TPD、XPS、拉曼光谱及O2脉冲等方法对催化剂的结构、钒物种形态及分散度进行了系统的表征。表征结果表明,P改性后V-MCM-41催化剂的比表面积随着P含量的增加而缓慢下降,但整体仍能保持有序的六方介孔结构;P改性后表面钒物种的还原性和分散性均得到改善,聚合形态的钒物种比例明显下降。丙烷脱氢反应结果表明P改性后催化剂的丙烷脱氢性能和稳定性均有提高。在Si∶P投料摩尔比为30时制备的催化剂能够获得最大表面钒氧位点和最佳丙烷脱氢性能。
  • Figure  1  XRD patterns of V-P-MCM-41 catalysts

    Figure  2  N2 adsorption-desorption isotherms of V-P-MCM-41 catalysts

    Figure  3  TPR curves of V-P-MCM-41 catalysts

    Figure  4  NH3-TPD profiles of V-P-MCM-41 samples

    Figure  5  O2 chemisorption profiles of V-P-MCM-41 catalysts

    Figure  6  Curve fitting results of V 2p3/2 XPS spectra

    Figure  7  Raman spectra of V-P-MCM-41 catalysts

    Figure  8  Conversion of propane over V-P-MCM-41 catalysts

    Figure  9  Selectivity of propylene and CH4 over V-P-MCM-41 catalysts

    Table  1  Physio-chemical properties of V-P-MCM-41 catalysts

    SamplesSBET / m2g1Pore Volume / ccg1d100 a / Åα b / År c / Å
    P-10596.61.0740.346.525.6
    P-30601.50.8540.246.427.1
    P-50628.30.9639. 946.127.0
    P-0668.60.7339.045.127.6
    a: [100] Crystalline interplanar spacing, calculated by Prague equation.
    b: Cell parameter, α = 2d100/30.5.
    c: Pore diameter.
    下载: 导出CSV

    Table  2  TPR, TPD and O2 chemisorption results of V-P-MCM-41 catalysts

    SampleV a / wt%Proportion of Surface Vanadyl species bSurface V Sites cSurface V density d
    Highly DispersedPolymerized104 molg1nm2
    P-103.4980.519.53.193.21
    P-303.4578.821.93.353.35
    P-503.4375.025.03.293.15
    P-03.3874.325.73.112.80
    a: measured by ICP-AES
    b: determined by the deconvolution results of TPR
    c: determined by O2 chemisorption
    d: based on the surface V sites determined by O2 chemisorption and BET surface area
    下载: 导出CSV

    Table  3  XPS results of V-P-MCM-41

    SampleO 1s (eV)Si 2p (eV)Vanadyl species distribution / %
    517.0 eV518.4eV
    P-10532.6103.390.49.6
    P-30532.6103.592.17.9
    P-50532.6103.488.411.6
    P-0532.7103.583.816.2
    下载: 导出CSV

    Table  4  The surface composition of V-P-MCM-41 catalysts determined by XPS

    SampleSurface composition (mol %)Surface V content
    OSiPV (wt %)
    P-1063.4232.812.481.283.12
    P-3065.1232.451.141.293.17
    P-5064.6433.210.871.283.16
    P-065.2233.47/1.313.03
    下载: 导出CSV
  • [1] CAVANI F, BALLARINI N, CERICOLA A. Oxidative dehydrogenation of ethane and propane: How far from commercial implementation?[J]. Catal Today,2007,127(1-4):113−131. doi: 10.1016/j.cattod.2007.05.009
    [2] GARTNER C A, VAN VEEN A, LERCHER J A. Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects[J]. ChemCatChem,2013,5(11):3196−3217. doi: 10.1002/cctc.201200966
    [3] CARRERO C A, SCHLOEGL R, WACHS I E, SCHOMAECKER R. Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts[J]. ACS Catal,2014,4(10):3357−3380. doi: 10.1021/cs5003417
    [4] James O O, Mandal S, Alele N, Chowdhury B, Maity S. Lower alkanes dehydrogenation: Strategies and reaction routes to corresponding alkenes[J]. Fuel Process Technol,2016,149:239−255. doi: 10.1016/j.fuproc.2016.04.016
    [5] LONG L L, XIA K, LANG W Z, SHEN L L, YANG Q, YAN X, GUO Y J. The comparison and optimization of zirconia, alumina, and zirconia-alumina supported PtSnIn trimetallic catalysts for propane dehydrogenation reaction[J]. J Ind Eng Chem,2017,51:271−280. doi: 10.1016/j.jiec.2017.03.012
    [6] SOKOLOV S, BYCHKOV V Y, STOYANOVA M, RODEMERCK U, BENTRUP U, LINKE D, TYULENIN Y P, KORCHAK V N, KONDRATENKO E V. Effect of VOx Species and Support on Coke Formation and Catalyst Stability in Nonoxidative Propane Dehydrogenation[J]. ChemCatChem,2015,7(11):1691−1700. doi: 10.1002/cctc.201500151
    [7] WACHS I E. Catalysis science of supported vanadium oxide catalysts[J]. Dalton transactions,2013,42:11762−11769. doi: 10.1039/c3dt50692d
    [8] DONG A H, WANG K, ZHU S Z, YANG G B, WANG X T. Facile preparation of PtSn-La/Al2O3 catalyst with large pore size and its improved catalytic performance for isobutane dehydrogenation[J]. Fuel Process Technol,2017,158:218−225. doi: 10.1016/j.fuproc.2017.01.004
    [9] HARLIN M E, NIEMI V M, KRAUSE A O. Alumina-Supported Vanadium Oxide in the Dehydrogenation of Butanes[J]. J Catal,2000,195(1):67−78. doi: 10.1006/jcat.2000.2969
    [10] LIU Y M, CA Y, YI N, FENG W L, DAI W L, YAN S R, HE H Y, FAN K N. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane[J]. J Catal,2004,224(2):417−428. doi: 10.1016/j.jcat.2004.03.010
    [11] REDDY B M, LAKSHMANAN P, LORIDANT S, YAMADA Y, KOBAYASHI T, LÓPEZ-CARTES C, ROJAS T C, FERNÁNDEZ A. Structural Characterization and Oxidative Dehydrogenation Activity of V2O5/CexZr1-xO2/SiO2 Catalysts[J]. J Phys Chem B,2006,110(18):9140−9147. doi: 10.1021/jp061018k
    [12] RAJU G, REDDY B M, PARK S E. CO2 promoted oxidative dehydrogenation of n-butane over VOx/MO2–ZrO2 (M = Ce or Ti) catalysts[J]. J. CO2 Util,2014,5:41−46. doi: 10.1016/j.jcou.2013.12.003
    [13] R. ZHOU, Y. CAO, S.-R. YAN, K.-N. FAN. Rare earth (Y, La, Ce)-promoted V-HMS mesoporous catalysts for oxidative dehydrogenation of propane[J]. Appl Catal A-Gen,2002,236(1-2):103−111. doi: 10.1016/S0926-860X(02)00281-8
    [14] SASIKALA R, SUDARSAN V, KULSHRESHTHA S K. Studies on the interaction of vanadia with modified silica supports and catalytic activity for oxidative dehydrogenation of propane: Effect of support modification by Al3+, Zr4+ or Y3+[J]. Eur J Inorg Chem,2006,2006(20):4151−4156. doi: 10.1002/ejic.200600555
    [15] YANG S, IGLESIA E, BELL A T. Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural Characterization and Catalytic Function[J]. J Phys Chem B,2005,109(18):8987−9000. doi: 10.1021/jp040708q
    [16] AJAYI B P, JERMY B R, OGUNRONBI K E, Abussaud B A, Al-Khattaf S. n-Butane dehydrogenation over mono and bimetallic MCM-41 catalysts under oxygen free atmosphere[J]. Catal Today,2013,204:189−196. doi: 10.1016/j.cattod.2012.07.013
    [17] ASCOOP I, GALVITA V V, ALEXOPOULOS K, REYNIERS M F, VAN DER VOORT P, BLIZNUK V, MARIN G B. The role of CO2 in the dehydrogenation of propane over WOx-VOx/SiO2[J]. J Catal,2016,335:1−10. doi: 10.1016/j.jcat.2015.12.015
    [18] WANG X, ZHOU G, CHEN Z, LI Q, ZHOU H, XU C. Enhancing the vanadium dispersion on V-MCM-41 by boron modification for efficient iso-butane dehydrogenation[J]. Appl Catal A-Gen,2018,555:171−177. doi: 10.1016/j.apcata.2018.02.021
    [19] OYAMA S T, WENT G T, LEWIS K B, BELL A T, SOMORJAI G A. Oxygen-chemisorption and Laser Raman-spectroscopy of unsupported and silica-supported vanadium-oxide catalysts[J]. J Phys Chem,1989,93(18):6786−6790. doi: 10.1021/j100355a041
    [20] SHYLESH S, SINGH A. Vanadium-containing ordered mesoporous silicates: Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41?[J]. J Catal,2005,233(2):359−371. doi: 10.1016/j.jcat.2005.05.001
    [21] WANG C B, DEO G, WACHS I E. Characterization of Vanadia Sites in V-Silicalite, Vanadia-Silica Cogel, and Silica-Supported Vanadia Catalysts: X-Ray Powder Diffraction, Raman Spectroscopy, Solid-State 51V NMR, Temperature-Programmed Reduction, and Methanol Oxidation Studies[J]. J Catal,1998,178(2):640−648. doi: 10.1006/jcat.1998.2193
    [22] SOLSONA B, BLASCO T, LÓPEZ NIETO J M, PEÑA M L, REY F, VIDAL-MOYA A. Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes[J]. J Catal,2001,203(2):443−452. doi: 10.1006/jcat.2001.3326
    [23] WANG X, ZHOU G, CHEN Z, JIANG W, ZHOU H. In-situ synthesis and characterization of V-MCM-41 for oxidative dehydrogenation of n-butane[J]. Microporous Mesoporous Mater,2016,223:261−267. doi: 10.1016/j.micromeso.2015.06.029
    [24] LIU Q L, YANG Z, LUO M S, ZHAO Z, WANG J Y, XIE Z A, GUO L. Vanadium-containing dendritic mesoporous silica nanoparticles: Multifunctional catalysts for the oxidative and non-oxidative dehydrogenation of propane to propylene[J]. Microporous Mesoporous Mater,2019,282:133−145. doi: 10.1016/j.micromeso.2019.03.036
    [25] LI X K, JI W J, ZHAO J, ZHANG Z, AU C T. A comparison study on the partial oxidation of n-butane and propane over VPO catalysts supported on SBA-15, MCM-41, and fumed SiO2[J]. Appl Catal A-Gen,2006,306:8−16. doi: 10.1016/j.apcata.2006.02.061
    [26] ARIAS-PÉREZ S, GARCÍA-ALAMILLA R, CÁRDENAS-GALINDO M G, HANDY B E, ROBLES-ANDRADE S, SANDOVAL-ROBLES G. Evaluation of Vanadium-Phosphorus Oxide (VPO) Catalysts for the Oxidative Dehydrogenation of Propane[J]. Ind Eng Chem Res,2009,48(3):1215−1219. doi: 10.1021/ie800649z
    [27] BULÁNEK R, KALUŽOVÁA, SETNIČKA M, ZUKAL A, ČIČMANEC P, MAYEROVÁ J. Study of vanadium based mesoporous silicas for oxidative dehydrogenation of propane and n-butane[J]. Catal Today,2012,179(1):149−158. doi: 10.1016/j.cattod.2011.08.044
    [28] SETNIČKA M, BULÁNEK R, ČAPEK L, ČIČMANEC P. n-Butane oxidative dehydrogenation over VOx-HMS catalyst[J]. J Mol Catal A: Chem,2011,344(1-2):1−10. doi: 10.1016/j.molcata.2011.05.004
    [29] SANTRA C, SHAH S, MONDAL A, PANDEY J K, PANDA A B, MAITY S, CHOWDHURY B. Synthesis, characterization of VPO catalyst dispersed on mesoporous silica surface and catalytic activity for cyclohexane oxidation reaction[J]. Microporous Mesoporous Mater,2016,223:121−128. doi: 10.1016/j.micromeso.2015.10.046
    [30] PUTLURU S, RIISAGER A, FEHRMANN R. The Effect of Acidic and Redox Properties of V2O5/CeO2-ZrO2 Catalysts in Selective Catalytic Reduction of NO by NH3[J]. Catal Lett,2009,133:370−375. doi: 10.1007/s10562-009-0176-8
    [31] HU P, LANG W Z, YAN X, CHU L F, GUO Y J. Influence of gelation and calcination temperature on the structure-performance of porous VOx-SiO2 solids in non-oxidative propane dehydrogenation[J]. J Catal,2018,358:108−117. doi: 10.1016/j.jcat.2017.12.004
    [32] ROSTOM S, DE LASA H I. Propane Oxidative Dehydrogenation Using Consecutive Feed Injections and Fluidizable VOx/gamma Al2O3 and VOx/ZrO2-gamma Al2O3 Catalysts[J]. Ind Eng Chem Res,2017,56:13110−13125.
    [33] WACHS I E, WECKHUYSEN B M. Vanadia catalysts for selective oxidation of hydrocarbons and their derivativesStructure and reactivity of surface vanadium oxide species on oxide supports[J]. Appl Catal A-Gen,1997,157(1-2):67−90. doi: 10.1016/S0926-860X(97)00021-5
    [34] CARRERO C A, KETURAKIS C J, ORREGO A, SCHOMACKER R, WACHS I E. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor[J]. Dalton transactions,2013,42:12644−12653. doi: 10.1039/c3dt50611h
    [35] MURGIA V, TORRES E, GOTTIFREDI J, SHAM E. Sol-gel synthesis of V2O5-SiO2 catalyst in the oxidative dehydrogenation of n-butane[J]. Appl Catal A-Gen,2006,312:134−143. doi: 10.1016/j.apcata.2006.06.042
    [36] ARENA F, FRUSTERI F, MARTRA G, COLUCCIA S, PARMALIANA A. Surface structures, reduction pattern and oxygen chemisorption of V2O5/SiO2catalysts[J]. J Chem Soc Faraday Trans,1997,93:3849−3854. doi: 10.1039/a702537h
    [37] FUKUDOME K, IKENAGA N, MIYAKE T, SUZUKI T. Oxidative dehydrogenation of propane using lattice oxygen of vanadium oxides on silica[J]. Catal Sci Technol,2011,1:987−998. doi: 10.1039/c1cy00115a
    [38] BAI P, MA Z, LI T, TIAN Y, ZHANG Z, ZHONG Z, XING W, WU P, LIU X, YAN Z. Relationship between Surface Chemistry and Catalytic Performance of Mesoporous γ-Al2O3 Supported VOx Catalyst in Catalytic Dehydrogenation of Propane[J]. ACS Appl Mater Interfaces,2016,8(39):25979−25990. doi: 10.1021/acsami.6b07779
    [39] TIAN Y P, BAI P, LIU S M, LIU X M, YAN Z F. VOx–K2O/γ-Al2O3 catalyst for nonoxidative dehydrogenation of isobutane[J]. Fuel Process Technol,2016,151:31−39. doi: 10.1016/j.fuproc.2016.05.024
    [40] CHEN C, SUN M L, HU Z P, LIU Y P, ZHANG S M, YUAN Z Y. Nature of active phase of VOx catalysts supported on SiBeta for direct dehydrogenation of propane propylene[J]. Chin J Catal,2020,41(2):276−285. doi: 10.1016/S1872-2067(19)63444-3
    [41] CASALETTO M P, LISI L, MATTOGNO G, PATRONO P, RUOPPOLO G. An XPS study of titania-supported vanadyl phosphate catalysts for the oxidative dehydrogenation of ethane[J]. Appl Catal A-Gen,2004,267(1-2):157−164. doi: 10.1016/j.apcata.2004.02.039
    [42] HASHA D, SIERRA DE SALDARRIAGA L, SALDARRIAGA C, HATHAWAY P E, COX D F, DAVIS M E. Studies of silicoaluminophosphates with the sodalite structure[J]. J Am Chem Soc,1988,110:2127−2135. doi: 10.1021/ja00215a020
    [43] EBERHARDT M A, PROCTOR A, HOUALLA M, HERCULES D M. Investigation of V Oxidation States in Reduced V/Al2O3 Catalysts by XPS[J]. J Catal,1996,160(1):27−34. doi: 10.1006/jcat.1996.0120
    [44] GAO X, JEHNG J M, WACHS I E. In Situ UV–vis–NIR Diffuse Reflectance and Raman Spectroscopic Studies of Propane Oxidation over ZrO2-Supported Vanadium Oxide Catalysts[J]. J Catal,2002,209(1):43−50. doi: 10.1006/jcat.2002.3635
    [45] RESINI C, MONTANARI T, BUSCA G, JEHNG J M, WACHS I E. Comparison of alcohol and alkane oxidative dehydrogenation reactions over supported vanadium oxide catalysts: in situ infrared, Raman and UV-vis spectroscopic studies of surface alkoxide intermediates and of their surface chemistry[J]. Catal Today,2005,99(1-2):105−114. doi: 10.1016/j.cattod.2004.09.029
    [46] DZWIGAJ S. Recent advances in the incorporation and identification of vanadium species in microporous materials[J]. Curr Opin Solid State Mater Sci,2003,7(6):461−470. doi: 10.1016/j.cossms.2004.03.011
    [47] PIUMETTI M, BONELLI B, MASSIANI P, DZWIGAJ S, ROSSETTI I, CASALE S, GABEROVA L, ARMANDI M, GARRONE E. Effect of vanadium dispersion and support properties on the catalytic activity of V-SBA-15 and V-MCF mesoporous materials prepared by direct synthesis[J]. Catal Today,2011,176(1):458−464. doi: 10.1016/j.cattod.2010.10.066
    [48] CHRISTODOULAKIS A. Molecular structure and reactivity of vanadia-based catalysts for propane oxidative dehydrogenation studied by in situ Raman spectroscopy and catalytic activity measurements[J]. J Catal,2004,222(2):293−306. doi: 10.1016/j.jcat.2003.10.007
    [49] RODEMERCK U, SOKOLOV S, STOYANOVA M, BENTRUP U, LINKE D, KONDRATENKO E V. Influence of support and kind of VOx species on isobutene selectivity and coke deposition in non-oxidative dehydrogenation of isobutane[J]. J Catal,2016,338:174−183. doi: 10.1016/j.jcat.2016.03.003
    [50] OVSITSER O, SCHOMAECKER R, KONDRATENKO E V, WOLFRAM T, TRUNSCHKE A. Highly selective and stable propane dehydrogenation to propene over dispersed VOx-species under oxygen-free and oxygen-lean conditions[J]. Catal Today,2012,192(1):16−19. doi: 10.1016/j.cattod.2012.01.034
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-07-06
  • 网络出版日期:  2021-08-13

目录

    /

    返回文章
    返回