留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙烯焦油窄馏分炭化性能研究

于洋洋 位强 王峰 焦守辉 邱志鹏 王丽丽 刘贺 陈坤 郭爱军

于洋洋, 位强, 王峰, 焦守辉, 邱志鹏, 王丽丽, 刘贺, 陈坤, 郭爱军. 乙烯焦油窄馏分炭化性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60151-2
引用本文: 于洋洋, 位强, 王峰, 焦守辉, 邱志鹏, 王丽丽, 刘贺, 陈坤, 郭爱军. 乙烯焦油窄馏分炭化性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60151-2
YU Yang-yang, WEI Qiang, WANG Feng, JIAO Shou-hui, QIU Zhi-peng, WANG Li-li, LIU He, CHEN Kun, GUO Ai-jun. Carbonization characteristics of ethylene tar narrow fractions[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60151-2
Citation: YU Yang-yang, WEI Qiang, WANG Feng, JIAO Shou-hui, QIU Zhi-peng, WANG Li-li, LIU He, CHEN Kun, GUO Ai-jun. Carbonization characteristics of ethylene tar narrow fractions[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60151-2

乙烯焦油窄馏分炭化性能研究

doi: 10.1016/S1872-5813(21)60151-2
基金项目: 国家自然科学基金(21776313, 21908248),山东省重点研发计划(2017GGX70108),中央高校专项研究基金(20CX02206A),重质油国家重点实验室项目(25F21040114)和研究生创新工程(YCX2021056)资助
详细信息
    作者简介:

    于洋洋:s19030077@s.upc.edu.cn

    通讯作者:

    Tel: 0532-86980607,Fax: 0532-86981787,E-mail: ajguo@upc.edu.cn

  • 中图分类号: TE626.8+7

Carbonization characteristics of ethylene tar narrow fractions

Funds: The project was supported by the National Natural Science Foundation of China (21776313, 21908248), the Key Technology Research and Development Program of Shandong (2017GGX70108), the Fundamental Research Funds for the Central Universities (20CX02206A), and the Development Fund of State Key Laboratory of Heavy Oil Processing (25F21040114), and Graduate innovation project (YCX2021056)
  • 摘要: 为研究乙烯焦油作为生产针状焦原料的可行性,以某炼厂乙烯焦油及对其蒸馏切割所得窄馏分油为研究对象,通过元素分析、红外光谱(FTIR)、核磁共振氢谱(1H NMR)、生焦诱导期测定及焦化进料热稳定性模拟等方法,对油样的基本性质、结构组成和热稳定性进行研究,并通过偏光显微镜、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等方法对各油样在不同炭化条件下的产物性能进行分析。结果表明,乙烯焦油全馏分沥青质含量高达22.04%,且烯烃等热反应活性组分含量较高,热稳定性较差,生焦诱导期仅为34 min。蒸馏处理所得馏分油不含沥青质,热反应活性组分含量较低,热稳定性变好,生焦诱导期均大于55 min。窄馏分油由于分子分布范围较窄、热反应活性组分含量低,相较于全馏分形成的半焦具有更好的各向异性结构和微晶结构。两段炭化相较于一段炭化更有利于中间相的融并发育及有序排列,形成纤维状的广域流线型结构。两段炭化制得焦炭热膨胀系数(CTE)的值均优于一段炭化,馏分油(ET-C)在两段炭化条件下制得针状焦的CTE值为2.49×10−6/℃,符合针状焦CTE值不大于2.60×10−6/℃的标准。
  • 图  1  炭化反应釜简图

    Figure  1  Carbonization reactor diagram

    图  2  ET及窄馏分生焦趋势

    Figure  2  Coke formation trend of ET and its narrow fractions

    图  3  5种油样焦化进料热稳定性模拟结果

    Figure  3  Thermal stability simulation of five oil samples

    图  4  ET及窄馏分红外光谱

    Figure  4  FTIR spectra of ET and its narrow fractions

    图  5  ET及其窄馏分1H NMR谱图

    Figure  5  1H NMR spectra of ET and its narrow fractions

    图  6  ET及其窄馏分不同炭化条件所得半焦偏光显微照片

    Figure  6  Polarized-light microscopic images of green cokes derived from carbonization of ET and its narrow fractions under different carbonization conditions

    图  7  两种炭化条件下各油样半焦的XRD图谱

    Figure  7  The XRD spectra of green cokes derived from ET and its narrow fractions under two carbonization conditions

    图  8  ET与ET-C在两种炭化条件下制备焦炭的SEM照片

    Figure  8  SEM images of cokes prepared from ET and ET-C obtained at two carbonization conditions

    表  1  ET及窄馏分基本性质

    Table  1  Selected properties of ET and its narrow fractions

    ItemsETET-AET-BET-C
    H /(wt %)7.467.477.377.32
    C /(wt %)92.0892.0192.2992.30
    S /(wt %)0.160.030.040.09
    N /(wt %)0.08000
    C/H atomic ratio1.0361.0341.0511.058
    Ash /(μg·g−1)26000
    QI /(wt %)0.06000
    carbon residue /(wt %)15.210.821.281.44-
    Saturates /(wt %)9.0613.98.724.37
    Aromatics /(wt %)58.6785.3488.7590.87
    Resins /(wt %)10.230.762.536.76
    Asphaltenes /(wt %)22.04000
    下载: 导出CSV

    表  2  斑点等级评价标准

    Table  2  Evaluation standards of spot number.

    spot numbercharacterizing features
    1The spot is uniform and there is no inner spot
    2There is subtle and indistinct inner spot
    3There is distinct thin inner spot, and is slightly darker than background color
    4There is distinct inner spot, and is darker than background color
    5The inner spot is almost solid state, and is much darker than background color
    下载: 导出CSV

    表  3  ET及窄馏分中类型氢含量及分布

    Table  3  Hydrogen distribution of ET and its narrow fractions

    Hydrogen type
    Chemical shift (ppm)[20]
    Hydrogen content (%)
    ETET-AET-BET-C
    Har9.0–6.047.7256.7352.5347.06
    Ho6.0–4.51.651.331.311.37
    Hα4.0–2.036.1331.1329.6733.45
    Hn2.0–1.66.222.464.885.55
    Hβ1.6–1.07.176.729.5510.54
    Hγ1.0–0.51.131.621.962.03
    Hβ/ Hγ6.374.144.875.20
      * Har: aromatic hydrogens; Ho: Hydrogens in olefin; Hn: naphthenic hydrogen; Hα: aliphatic hydrogens in α-position to the aromatic carbon; Hβ: aliphatic hydrogens in β-position to the aromatic carbon; Hγ: aliphatic hydrogens in γ-position to the aromatic carbon.
    下载: 导出CSV

    表  4  各油样在两种炭化条件下产物的微晶结构参数

    Table  4  XRD crystal parameters of the green cokes derived from ET and its narrow fractions under two carbonization conditions

    Sample2θ(002)/(°)β002d002Lc/nm
    ET-O 25.432 0.0942 3.502 1.4928
    ET-A-O 25.457 0.0938 3.499 1.4998
    ET-B-O 25.479 0.0931 3.496 1.5109
    ET-C-O 25.525 0.0929 3.490 1.5138
    ET-T 25.463 0.0937 3.498 1.5007
    ET-A-T 25.568 0.0922 3.484 1.5261
    ET-B-T 25.635 0.0903 3.475 1.5584
    ET-C-T 25.743 0.0885 3.461 1.5903
    下载: 导出CSV

    表  5  各油样在两种炭化条件下所得针状焦的热膨胀系数

    Table  5  CTE of the needle cokes derived from ET and its narrow fractions under two carbonization conditions

    Samples
    CTE*/ (1×10−6/℃)
    one-stage carbonizationtwo-stage carbonization
    ET3.353.08
    ET-A3.172.83
    ET-B3.092.72
    ET-C2.842.49
    Commercial needle coke–12.47
    Commercial needle coke–22.39
      *Requirement: 2.6×10−6/℃,according to RIPP method[25].
    下载: 导出CSV
  • [1] 刘建锟, 蒋立敬, 杨涛, 方向晨. 乙烯焦油加工利用进展[J]. 化工进展,2012,31(1):402−405.

    LIU Jian-kun, JIANG Li-jing, YANG Tao, FANG Xiang-chen. Ethylene tar processing and utilization progress[J]. Chem Ind Eng Prog,2012,31(1):402−405.
    [2] 刘毓敏, 牟永波, 乔海燕, 石薇薇, 曹祖斌. 乙烯焦油综合利用研究进展[J]. 现代化工,2020,40(6):42−46.

    LIU Yu-min, MOU Yong-bo, QIAO Hai-yan, SHI Wei-wei, CAO Zu-bin. Research progress on comprehensive utilization of ethylene tar[J]. Mod Chem Ind,2020,40(6):42−46.
    [3] ABRAHAMSON J P, WINCEK R T, ESER S. Scheme for hydrotreatment of fluid catalytic cracking decant oil with reduced hydrogen consumption and high needle coke yield upon carbonization[J]. Energy Fuels,2016,30(10):8150−8155. doi: 10.1021/acs.energyfuels.6b01443
    [4] 林雄超, 盛喆, 邵苛苛, 许德平, 王永刚. 煤焦油沥青族组成对针状焦中间相结构的影响[J]. 燃料化学学报,2021,49(2):151−159.

    LIN Xiong-chao, SHENG Zhe, SHAO Ke-ke, XU De-ping, WANG Yong-gang. Influence of group component distribution of coal tar pitch on mesophase structure development of needle coke[J]. J Fuel Chem Technol,2021,49(2):151−159.
    [5] JIAO S H, GUO A J, WANG F, YU Y Y, BERNARD W B, LIU H, CHEN K, LIU D, WANG Z X, SUN L Y. Sequential pretreatments of an FCC slurry oil sample for preparation of feedstocks for high-value solid carbon materials[J]. Fuel,2021,285:119169. doi: 10.1016/j.fuel.2020.119169
    [6] MOCHIDA I, FEI Y Q, KORAI Y. A study of the carbonization of ethylene tar pitch and needle coke formation[J]. Fuel,1990,69(6):667−671. doi: 10.1016/0016-2361(90)90026-M
    [7] 杨万强. 掺炼预处理乙烯焦油对延迟焦化装置的影响[J]. 石化技术与应用,2020,38(6):399−402. doi: 10.3969/j.issn.1009-0045.2020.06.010

    YANG Wan-qiang. Effect of blending pretreatment ethylene tar on delayed coking unit[J]. Petrochem Techno Appl,2020,38(6):399−402. doi: 10.3969/j.issn.1009-0045.2020.06.010
    [8] 马文斌. 几种石油系重质原料焦炭化性能的对比分析[J]. 石油炼制与化工,2014,45(9):30−35. doi: 10.3969/j.issn.1005-2399.2014.09.015

    MA Wen-bin. Comparison of coking properties of heavy petroleum raw materials[J]. Pet Process Petrochem,2014,45(9):30−35. doi: 10.3969/j.issn.1005-2399.2014.09.015
    [9] 钱树安, 李春锋, 周国英. 炭化原料的组成结构和中间相组织形态之间的关系[J]. 燃料化学学报,1984,12(4):348−360.

    QIAN Shu-an, LI Chun-feng, ZHOU Guo-ying. The relationship between the composition and molecular structure of carbonizing feedstocks and mesophase texture formed in pyrolysis[J]. J Fuel Chem Technol,1984,12(4):348−360.
    [10] 丁宗禹. 扩大针状焦的原料[J]. 石油炼制与化工,1988,19(9):30−35.

    DING Zong-yu. Extending the feedstock for needle coke production[J]. Pet Process Petrochem,1988,19(9):30−35.
    [11] YOKONO T, OBARA T, SANADA Y, MARSH H. Carbonization of hydrogenated ethylene tar pitch; study of the pitch molecular compactness factor and coke optical texture[J]. Fuel,1986,65(2):300−301. doi: 10.1016/0016-2361(86)90028-1
    [12] 肖志军, 祖德光. 从乙烯焦油生产针状焦的研究[J]. 石油学报(石油加工),1995,11(2):63−71.

    XIAO Zhi-jun, ZU De-guang. Study on production of needle coke form ethylene tar[J]. Acta Pet Sin (Pet Process Sect),1995,11(2):63−71.
    [13] 李锐, 丁宗禹, 祖德光. 乙烯装置渣油综合利用技术[J]. 炼油设计,1998,28(4):16−21.

    LI Rui, DING Zong-yu, ZU De-guang. Comprehensive utilization technology for tar form ethylene unit[J]. Refin Design,1998,28(4):16−21.
    [14] ESER S, JENKINS R G, DERBYSHIRE F J, MALLADI M. Carbonization of coker feedstocks and their fractions[J]. Carbon,1986,24(1):77−82. doi: 10.1016/0008-6223(86)90213-7
    [15] ESER S, DERBYSHIRE F J, KARSNER G G. Development of coke texture by thermal pretreatment of petroleum residua[J]. Fuel,1989,68(9):1146−1151. doi: 10.1016/0016-2361(89)90186-5
    [16] MOCHIDA I, OYAMA T, KORAI Y. Formation scheme of needle coke from FCC decant oil[J]. Carbon,1988,26(1):49−55. doi: 10.1016/0008-6223(88)90008-5
    [17] JIAO S H, GUO A J, WANG F, CHEN K, LIU H, UMMUL-KHAIRI I, WANG Z X, SUN L Y. Effects of olefins on mesophase pitch prepared from fluidized catalytic cracking decant oil[J]. Fuel,2020,262:116671. doi: 10.1016/j.fuel.2019.116671
    [18] 焦守辉, 林祥钦, 郭爱军, 陈坤, 王宗贤, 佟佳俊, 耿羽轩, 李若萌, 刘晴昊. 劣质渣油性质对受热生焦趋势影响的研究[J]. 燃料化学学报,2017,45(2):165−171. doi: 10.3969/j.issn.0253-2409.2017.02.005

    JIAO Shou-hui, LIN Xiang-qin, GUO Ai-jun, CHEN Kun, WANG Zong-xian, TONG Jia-jun, GENG Yu-xuan, LI Ruo-meng, LIU Qing-hao. Effect of characteristics of inferior residues on thermal coke induction periods[J]. J Fuel Chem Technol,2017,45(2):165−171. doi: 10.3969/j.issn.0253-2409.2017.02.005
    [19] 梁文杰, 阙国和, 刘晨光. 石油化学[M]. 第2版. 东营: 中国石油大学出版社, 2008: 172.

    LIANG Wen-jie, QUE Guo-he, LIU Chen-guang. Petroleum Chemistry[M]. 2nd ed. Dongying: China University of Petroleum Press, 2008: 172.
    [20] GUO A J, WANG F, JIAO S H, IBRAHIM U, LIU H, CHEN K, WANGZ X. Mesophase pitch production from FCC slurry oil: Optimizing compositions and properties of the carbonization feedstock by slurry-bed hydrotreating coupled with distillation[J]. Fuel,2020,262:116639. doi: 10.1016/j.fuel.2019.116639
    [21] LI M, LIU D, LOU B, HOU X, CHEN P. Relationship between Structural modification of aromatic-rich fraction from heavy oil and the development of mesophase microstructure in thermal polymerization process[J]. Energy Fuels,2016,30(10):8177−8184. doi: 10.1021/acs.energyfuels.6b01496
    [22] 程相林, 查庆芳, 钟景涛, 侯宝花, 郭燕生. 烷基在针状焦形成中的作用[J]. 燃料化学学报,2009,37(2):166−169. doi: 10.3969/j.issn.0253-2409.2009.02.008

    CHENG Xiang-lin, ZHA Qing-fang, ZHONG Jing-tao, HOU Bao-hua, GUO Yan-sheng. Influence of alkyl group on the formation of needle coke[J]. J Fuel Chem Technol,2009,37(2):166−169. doi: 10.3969/j.issn.0253-2409.2009.02.008
    [23] 程俊霞, 朱亚明, 高丽娟, 赵雪飞. 煤系针状焦煅烧过程中焦炭微晶结构的演变规律[J]. 燃料化学学报,2020,48(9):1071−1078. doi: 10.3969/j.issn.0253-2409.2020.09.006

    CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, ZHAO Xue-fei. Evolution of coke microcrystalline structure during calcination process of coal-based needle coke[J]. J Fuel Chem Technol,2020,48(9):1071−1078. doi: 10.3969/j.issn.0253-2409.2020.09.006
    [24] 刘杰, 史雪梅, 崔楼伟, 范晓勇, 施俊合, 徐贤, 田佳勇, 田育成, 郑金欣, 李冬. 原料组成对针状焦结构的影响[J]. 燃料化学学报,2021,49(4):546−553. doi: 10.1016/S1872-5813(21)60026-9

    LIU Jie, SHI Xue-mei, CUI Lou-wei, FAN Xiao-yong, SHI Jun-he, XU Xian, TIAN Jia-yong, TIAN Yu-cheng, ZHENG Jin-xin, LI Dong. Study on the influence of raw material composition on the structure of needle coke[J]. J Fuel Chem Technol,2021,49(4):546−553. doi: 10.1016/S1872-5813(21)60026-9
    [25] 杨翠定. 石油化工分析方法: RIPP试验方法[M]. 北京: 科学出版社, 1990: 63.

    YANG Cui-ding. Analysis methods for petrochemical industry: RIPP test methods[M]. Beijing: Science Press, 2009: 63.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  7
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 修回日期:  2021-08-02
  • 网络出版日期:  2021-09-06

目录

    /

    返回文章
    返回